Before the pointer handling was removed from the nitpicker server, the
pointer was always the first view, which was skipped in the find_view
function. However, since we support pointer-less operation by now, we
have to consider all views starting with the top-most one.
The port was succesfully tested a echo test and lighttpd. DHCP over
OpenVPN is not tested and probably will not work out of the box.
Therefore, the ip address etc. need to be specified manually.
For now, only ethernet bridging (using a TAP device) is supported.
Fixes#1235.
This commit adds a port the jitterentropy library to Genode. As
backend on x86_{32,64} 'rdtsc' is used and on ARMv{6,7} the
performance-counter.
Fixes#1239.
These file systems are provided on-demand by loading a shared library
when the fstab node is traversed. By convention this library is named
after the file system it provides. For example a file system that
provides a 'random' file system node is called 'vfs_random.lib.so'. It
is still possible to give the the node another name in the vfs. The
following code snippts illustrates this matter:
! [...]
! <config>
! <libc>
! <vfs>
! <dir name="dev"> <jitterentropy name="random"/> </dir>
! </vfs>
! </libc>
! </config>
! [...]
Here the jitterentropy file system, implemented in
'vfs_jitterentropy.lib.so' provides a file system node named 'random'
in the 'dev' directory. When traversing the vfs section the libc will
try to load 'vfs_jitterentropy.lib.so' but programs may access the
file system only via '/dev/random'.
Fixes#1240.
This patch fixes a potential race condition that could happen if a
client connects to nitpicker before the signal for the import of the
initial configuration was delivered. In this case, nitpicker would be
unable to assign a domain to the session (because this information comes
from the configuration), rendering subsequent calls to 'mode' invalid.
The patch solves this problem by manually calling the signal handler
for importing the configuration.
This provides bootable disk images for x86 platforms via
! RUN_OPT="--target disk"
The resulting disk image contains one ext2 partition with binaries from
the GRUB2 boot loader and the run scenario. The default disk size fits
all binaries, but is configurable via
! --disk-size <size in MiB>
in RUN_OPT.
The feature depends on an grub2-head.img, which is part of the commit,
but may also be generated by executing tool/create_grub2. The script
generates a disk image prepared for one partition, which contains files
for GRUB2. All image preparation steps that need superuser privileges
are conducted by this script.
The final step of writing the entire image to a disk must be executed
later by
sudo dd if=<image file> of=<device> bs=8M conv=fsync
Fixes#1203.
After modifying mode transition for branch prediction tz_vmm wasn't
working anymore on hw_imx53_tz but the modifications had nothing to do
with the VM code. However, the amount of instructions in the MT before the
VM exception-vector changed. So I tried stuffing the last working version with
NOPs and found that tz_vmm worked for some NOP amounts and for others not.
Thus, I increased the alignment of the VM exception-vector from 16 bytes to 32
bytes, é voila, its working with any amount of NOPs as well as with branch
prediction commits.
ref #474
Previously, we did the protection-domain switches without a transitional
translation table that contains only global mappings. This was fine as long
as the CPU did no speculative memory accesses. However, to enabling branch
prediction triggers such accesses. Thus, if we don't want to invalidate
predictors on every context switch, we need to switch more carefully.
ref #474
The console included nitpicker_view headers, which were not used. The
headers vanished with the recent nitpicker API change, which broke the
build of seoul.
This patch reimplements the nit_fb server using the server API and
thereby enables the dynamic resizing the of the framebuffer.
Note that the new implementation does not feature the ability to perform
a periodic refresh via the 'refresh_rate' configuration argument. This
feature was removed because the refresh policy can (and should) always
be implemented on the client side.
The QPluginWidget used to be a QNitpickerViewWidget but the new loader
interface does no longer hand out a view capability. So we need to
decouple both classes. This patch moves the view-geometry calculation to
a separate class to make it easier reusable, in particular for the
QPluginWidget.
The window manager provides a nitpicker session interface. In contrast
to the nitpicker server, which leaves the view layout up to the client,
the window manager organizes the views on screen according to a policy
provided by a window layouter. Furthermore, it equips views with window
decorations as provided by a window decorator. Both layouter and
decorator are independent programs.
This patch adds support for the consecutive re-dimensioning the virtual
framebuffer. When changing the buffer size, the session gets upgraded by
the missing portion of the quota instead of donating the whole size of
the new buffer each time.
This patch introduces a way to tweak the coordinate systems per
domain. The 'origin' attribute denotes the origin of the coordinate
system. Valid values are "top_left", "top_right", "bottom_left",
"bottom_right", and "pointer". Furthermore, the screen dimensions as
reported to the nitpicker client can be tweaked per domain using the
'width' and 'height' attributes. If the specified value is positive,
it is taken as literal boundary. If the value is negative, the size
if deducted by the specified amount from the physical screen area.
This patch introduces a mandatory layer attribute to domains. The layer
ordering is superimposed on the stacking order of the views. The
top-most layer can be assigned to a pointer-managing client. An example
for such a pointer is located at os/src/app/pointer. It replaces the
formerly built-in nitpicker mouse cursor.
The new layering mechanism replaces the former "stay-top" session
argument. So the Nitpicker::Connection no longer takes the stay-top flag
as the first argument.
A session can be explicitly configured to present its views in a
completely opaque way when the X-ray mode is active as opposed to the
default where each view gets tinted and surrounded by a frame. This
is useful for decorator views, which look overly busy otherwise.
This patch introduces the notion of a "domain" to the nitpicker
configuration concept. Session policies always refer to a domain where
multiple session policies can refer to the same domain. Thereby a domain
provides a way to express the grouping of sessions. This is useful for
applications that open multiple nitpicker sessions (such as Qt5 apps that
use one nitpicker session per window, menu, etc.). We want to assign all
those sessions to a single domain.
The configuration looks as follows:
<config>
...
<domain name="default" color="#ffffff"/>
<policy label="" domain="default"/>
...
</config>
This patch changes nitpicker's session interface to use session-local
view handles instead of view capabilities. This enables the batching
of multiple view operations into one atomic update.
This patch introduces a focus-management facility to the nitpicker
session interface. As a side effect of this change, we remove the notion
of a "focused view". There can only be a "focused session". This makes
sense because input is directed to sessions, not views.
Issue #1168
This patch changes nitpicker's way of redrawing. Originally, redraw
operations were triggered immediately by the RPC functions invoked by
clients. In the presence of clients that invoked a large number of those
functions, the server could become overloaded with processing redraw
operations. The new version performs redraw operations out of band with
the RPC functions. Similar to the design of the DOpE GUI server, redraw
operations are processed periodically. The RPC functions merely modify
meta data and track the dirty areas that need to be updated.
Consequently, nitpicker's RPC functions become light-weight operations.
As a nice collateral effect of this patch, nitpicker's internal
structure could be simplified because the drawing backend is no longer
needed by the code that dispatches the RPC interface.
So far, the lifetime-management utilities 'Weak_ptr' and 'Locked_ptr'
had been preserved for core-internal use only. However, the utilities
are handy for many use cases outside of core where object lifetimes
must be managed. So we promote them to the public API.
The new Rom_session::update function can be used to request the update of
an existing ROM dataspace. If the new data fits into the existing
dataspace, a subsequent call of 'dataspace' can be omitted. This way,
ROM dataspace updates don't suffer from page-fault-handling costs that
would occur when replacing the dataspace with each update.
When calling 'sub_node' on a node with no sub nodes, the Xml_node would
interpret the characters after the current node while searching for sub
nodes. The patch adds a sanity check that lets the 'sub_node' function
throw an exception when called on a node with no sub nodes.
This patch makes the handling of constructor arguments consistent among
the Volatile_object and Lazy_volatile_object classes. Arguments are
always forwarded. Otherwise, passing a reference as argument would result
in an unwanted copy of the passed object.
Some session interfaces use session-local handles for referring to
server-side objects, e.g., a file-system session hands out file handles
to the client. The new 'Handle_registry' class template can be used to
associate numeric handles with objects on the server side and thereby
simplifies the implementation of such servers.
This patch enables the debugging on services that rely on dynamic
session upgrades. For example, nitpicker expects its clients to donate
RAM quota that matches the size of the virtual framebuffer, which might
change during the lifetime of a nitpicker session.
* repos/ports/include/vmm
- add support to specify cpu location during vCPU construction
* seoul
- update to latest seoul branch supporting smp
- adjust to vmm interface changes
- vCPUs will be put in a round robin fashion on the available host CPUs,
beginning with the next CPU after the default (boot) CPU
- number of vCPUs can be specified in run script
* virtualbox
- adjust to vmm interface changes
- uses still one vCPU, placed on default (boot) CPU
Fixes#1212