This patch allows core's 'Signal_transmitter' implementation to sidestep
the 'Env::Pd' interface and thereby adhere to a stricter layering within
core. The 'Signal_transmitter' now uses - on kernels that depend on it -
a dedicated (and fairly freestanding) RPC proxy mechanism for signal
deliver, instead of channeling signals through the 'Pd_session::submit'
RPC function.
Previously, the Genode::Timer::curr_time always used the
Timer_session::elapsed_ms RPC as back end. Now, Genode::Timer reads
this remote time only in a periodic fashion independently from the calls
to Genode::Timer::curr_time. If now one calls Genode::Timer::curr_time,
the function takes the last read remote time value and adapts it using
the timestamp difference since the remote-time read. The conversion
factor from timestamps to time is estimated on every remote-time read
using the last read remote-time value and the timestamp difference since
the last remote time read.
This commit also re-works the timeout test. The test now has two stages.
In the first stage, it tests fast polling of the
Genode::Timer::curr_time. This stage checks the error between locally
interpolated and timer-driver time as well as wether the locally
interpolated time is monotone and sufficiently homogeneous. In the
second stage several periodic and one-shot timeouts are scheduled at
once. This stage checks if the timeouts trigger sufficiently precise.
This commit adds the new Kernel::time syscall to base-hw. The syscall is
solely used by the Genode::Timer on base-hw as substitute for the
timestamp. This is because on ARM, the timestamp function uses the ARM
performance counter that stops counting when the WFI (wait for
interrupt) instruction is active. This instruction, however is used by
the base-hw idle contexts that get active when no user thread needs to
be scheduled. Thus, the ARM performance counter is not a good choice for
time interpolation and we use the kernel internal time instead.
With this commit, the timeout library becomes a basic library. That means
that it is linked against the LDSO which then provides it to the program it
serves. Furthermore, you can't use the timeout library anymore without the
LDSO because through the kernel-dependent LDSO make-files we can achieve a
kernel-dependent timeout implementation.
This commit introduces a structured Duration type that shall successively
replace the use of Microseconds, Milliseconds, and integer types for duration
values.
Open issues:
* The timeout test fails on Raspberry PI because of precision errors in the
first stage. However, this does not render the framework unusable in general
on the RPI but merely is an issue when speaking of microseconds precision.
* If we run on ARM with another Kernel than HW the timestamp speed may
continuously vary from almost 0 up to CPU speed. The Timer, however,
only uses interpolation if the timestamp speed remained stable (12.5%
tolerance) for at least 3 observation periods. Currently, one period is
100ms, so its 300ms. As long as this is not the case,
Timer_session::elapsed_ms is called instead.
Anyway, it might happen that the CPU load was stable for some time so
interpolation becomes active and now the timestamp speed drops. In the
worst case, we would now have 100ms of slowed down time. The bad thing
about it would be, that this also affects the timeout of the period.
Thus, it might "freeze" the local time for more than 100ms.
On the other hand, if the timestamp speed suddenly raises after some
stable time, interpolated time can get too fast. This would shorten the
period but nonetheless may result in drifting away into the far future.
Now we would have the problem that we can't deliver the real time
anymore until it has caught up because the output of Timer::curr_time
shall be monotone. So, effectively local time might "freeze" again for
more than 100ms.
It would be a solution to not use the Trace::timestamp on ARM w/o HW but
a function whose return value causes the Timer to never use
interpolation because of its stability policy.
Fixes#2400
This patch reduces the number of exception types by facilitating
globally defined exceptions for common usage patterns shared by most
services. In particular, RPC functions that demand a session-resource
upgrade not longer reflect this condition via a session-specific
exception but via the 'Out_of_ram' or 'Out_of_caps' types.
Furthermore, the 'Parent::Service_denied', 'Parent::Unavailable',
'Root::Invalid_args', 'Root::Unavailable', 'Service::Invalid_args',
'Service::Unavailable', and 'Local_service::Factory::Denied' types have
been replaced by the single 'Service_denied' exception type defined in
'session/session.h'.
This consolidation eases the error handling (there are fewer exceptions
to handle), alleviates the need to convert exceptions along the
session-creation call chain, and avoids possible aliasing problems
(catching the wrong type with the same name but living in a different
scope).
This patch mirrors the accounting and trading scheme that Genode employs
for physical memory to the accounting of capability allocations.
Capability quotas must now be explicitly assigned to subsystems by
specifying a 'caps=<amount>' attribute to init's start nodes.
Analogously to RAM quotas, cap quotas can be traded between clients and
servers as part of the session protocol. The capability budget of each
component is maintained by the component's corresponding PD session at
core.
At the current stage, the accounting is applied to RPC capabilities,
signal-context capabilities, and dataspace capabilities. Capabilities
that are dynamically allocated via core's CPU and TRACE service are not
yet covered. Also, the capabilities allocated by resource multiplexers
outside of core (like nitpicker) must be accounted by the respective
servers, which is not covered yet.
If a component runs out of capabilities, core's PD service prints a
warning to the log. To observe the consumption of capabilities per
component in detail, the PD service is equipped with a diagnostic
mode, which can be enabled via the 'diag' attribute in the target
node of init's routing rules. E.g., the following route enables the
diagnostic mode for the PD session of the "timer" component:
<default-route>
<service name="PD" unscoped_label="timer">
<parent diag="yes"/>
</service>
...
</default-route>
For subsystems based on a sub-init instance, init can be configured
to report the capability-quota information of its subsystems by
adding the attribute 'child_caps="yes"' to init's '<report>'
config node. Init's own capability quota can be reported by adding
the attribute 'init_caps="yes"'.
Fixes#2398
This patch reworks the implementation of core's RAM service to make use
of the 'Session_object' and to remove the distinction between the
"metadata" quota and the managed RAM quota. With the new implementation,
the session implicitly allocates its metadata from its own account. So
there is not need to handle 'Out_of_metadata' and 'Quota_exceeded' via
different exceptions. Instead, the new version solely uses the
'Out_of_ram' exception.
Furthermore, the 'Allocator::Out_of_memory' exception has become an alias
for 'Out_of_ram', which simplifies the error handling.
Issue #2398
This patch replaces the former use of size_t with the use of the
'Ram_quota' type to improve type safety (in particular to avoid
accidentally mixing up RAM quotas with cap quotas).
Issue #2398
The 'Ram_allocator' interface contains the subset of the RAM session
interface that is needed to satisfy the needs of the 'Heap' and
'Sliced_heap'. Its small size makes it ideal for intercepting memory
allocations as done by the new 'Constrained_ram_allocator' wrapper
class, which is meant to replace the existing 'base/allocator_guard.h'
and 'os/ram_session_guard.h'.
Issue #2398
This commit enables compile-time warnings displayed whenever a deprecated
API header is included, and adjusts the existing #include directives
accordingly.
Issue #1987
The init component used to create the CPU/RAM/PD/ROM sessions (the child
environment) for its children by issuing session requests to its parent,
which is typically core. This policy was hard-wired. This patch enables
the routing of the environment sessions of the children of init
according to the configured routing policy.
Because there is no hard-wired policy regarding the environment sessions
anymore, routes to respective services must be explicitly declared in
the init configuration. For this reason, the patch adjusts several run
scripts in this respect.
This patch removes the outdated '<if-args>' special handling of session
labels. The '<if-args>' feature will eventually be removed completely
(ref #2250)
Issue #2197
Issue #2215
Issue #2233
Issue #2250
This patch enables warnings if one of the deprecate functions that rely
in the implicit use of the global Genode::env() accessor are called.
For the time being, some places within the base framework continue
to rely on the global function while omitting the warning by calling
'env_deprecated' instead of 'env'.
Issue #1987
This patch make the ABI mechanism available to shared libraries other
than Genode's dynamic linker. It thereby allows us to introduce
intermediate ABIs at the granularity of shared libraries. This is useful
for slow-moving ABIs such as the libc's interface but it will also
become handy for the package management.
To implement the feature, the build system had to be streamlined a bit.
In particular, archive dependencies and shared-lib dependencies are now
handled separately, and the global list of 'SHARED_LIBS' is no more.
Now, the variable with the same name holds the per-target list of shared
libraries used by the target.
Ubuntu provides position independent shared objects for libraries, e.g.,
libsdl1.2-dev. To appropriatly link it to Genode, the linker flag
'-no-pie' has to be added to the make file.
This patch removes the component_entry_point library, which used to
proved a hook for the libc to intercept the call of the
'Component::construct' function. The mechansim has several shortcomings
(see the discussion in the associated issue) and was complex. So we
eventually discarded the approach in favor of the explicit handling of
the startup.
A regular Genode component provides a 'Component::construct' function,
which is determined by the dynamic linker via a symbol lookup.
For the time being, the dynamic linker falls back to looking up a 'main'
function if no 'Component::construct' function could be found.
The libc provides an implementation of 'Component::construct', which
sets up the libc's task handling and finally call the function
'Libc::Component::construct' from the context of the appllication task.
This function is expected to be provided by the libc-using application.
Consequently, Genode components that use the libc have to implement the
'Libc::Component::construct' function.
The new 'posix' library provides an implementation of
'Libc::Component::construct' that calls a main function. Hence, POSIX
programs that merely use the POSIX API merely have to add 'posix' to the
'LIBS' declaration in their 'target.mk' file. Their execution starts at
'main'.
Issue #2199
This patch makes the benefit of the recently introduced unified Genode
ABI available to developers by enabling the use of multiple kernels from
within a single build directory. The create_builddir tool has gained a
new set of kernel-agnostic platform arguments such as x86_32, or panda.
Most build targets within directories are in principle compatible with
all kernels that support the selected hardware platform. To execute a
scenario via the run tool, one has to select the kernel to use by
setting the 'KERNEL' argument in the build configuration
(etc/build.conf). Alternatively, the 'KERNEL' can be specified as
command-line argument of the Genode build system, e.g.:
make run/log KERNEL=nova
This allows us to easily switch from one kernel to another without
rebuilding any Genode component except for the very few kernel-specific
ones.
The new version of the 'create_builddir' tool is still compatible with
the old version. The old kernel-specific build directories can still be
created. However, those variants will eventually be removed.
Note that the commit removes the 'ports-foc' repository from the
generated 'build.conf' files. As this is only meaningful for 'foc',
I did not want to include it in the list of regular repositories (as
visible in a 'x86_32' build directory). Hence, the repository must
now be manually added in order to use L4Linux.
Issue #2190
This patch changes the child-construction procedure to allow the routing
of environment sessions to arbitrary servers, not only to the parent.
In particular, it restores the ability to route the LOG session of the
child to a LOG service provided by a child of init. In principle, it
becomes possible to also route the immediate child's PD, CPU, and RAM
environment sessions in arbitrary ways, which simplifies scenarios that
intercept those sessions, e.g., the CPU sampler.
Note that the latter ability should be used with great caution because
init needs to interact with these sessions to create/destruct the child.
Normally, the sessions are provided by the parent. So init is safe at
all times. If they are routed to a child however, init will naturally
become dependent on this particular child. For the LOG session, this is
actually not a problem because even though the parent creates the LOG
session as part of the child's environment, it never interacts with the
session directly.
Fixes#2197
This patch removes possible ambiguities with respect to the naming of
kernel-dependent binaries and libraries. It also removes the use of
kernel-specific global side effects from the build system. The reach of
kernel-specific peculiarities has thereby become limited to the actual
users of the respective 'syscall-<kernel>' libraries.
Kernel-specific build artifacts are no longer generated at magic places
within the build directory (like okl4's includes, or the L4 build
directories of L4/Fiasco and Fiasco.OC, or the build directories of
various kernels). Instead, such artifacts have been largely moved to the
libcache. E.g., the former '<build-dir>/l4/' build directory for the L4
build system resides at '<build-dir>/var/libcache/syscall-foc/build/'.
This way, the location is unique to the kernel. Note that various tools
are still generated somewhat arbitrarily under '<build-dir>/tool/' as
there is no proper formalism for building host tools yet.
As the result of this work, it has become possible to use a joint Genode
build directory that is usable with all kernels of a given hardware
platform. E.g., on x86_32, one can now seamlessly switch between linux,
nova, sel4, okl4, fiasco, foc, and pistachio without rebuilding any
components except for core, the kernel, the dynamic linker, and the timer
driver. At the current stage, such a build directory must still be
created manually. A change of the 'create_builddir' tool will follow to
make this feature easily available.
This patch also simplifies various 'run/boot_dir' plugins by removing
the option for an externally hosted kernel. This option remained unused
for many years now.
Issue #2190
This patch decouples the kernel-specific implementation of the dynamic
linker from its kernel-agnostic binary interface. The name of the
kernel-specific dynamic linker binary now corresponds to the kernel,
e.g., 'ld-linux.lib.so' or 'ld-nova.lib.so'. Applications are no longer
linked directly against a concrete instance of the dynamic linker but
against a shallow stub called 'ld.lib.so'. This stub contains nothing
but the symbols provided by the dynamic linker. It thereby represents
the Genode ABI.
At system-integration time, the kernel-specific run/boot_dir back ends
integrate the matching the kernel-specific variant of the dynamic linker
as 'ld.lib.so' into the boot image.
The ABI symbol file for the dynamic linker is located at
'base/lib/symbols/ld'. It contains the joint ABI of all supported
architectures. The new utility 'tool/abi_symbols' eases the creation of
such an ABI symbol file for a given shared library. Its result should be
manually inspected and edited as needed.
The patch removes the 'syscall' library from 'base_libs.mk' to avoid
polluting the kernel-agnostic ABI with kernel-specific interfaces.
Issue #2190
Issue #2195
This patch unconditionally applies the labeling of sessions and thereby
removes the most common use case of 'Child_policy::filter_session_args'.
Furthermore, the patch removes an ambiguity of the session labels of
sessions created by the parent of behalf of its child, e.g., the PD
session created as part of 'Child' now has the label "<child-name>"
whereas an unlabeled PD-session request originating from the child
has the label "<child-name> -> ". This way, the routing-policy of
'Child_policy::resolve_session_request' can differentiate both cases.
As a consequence, the stricter labeling must now be considered wherever
a precise label was specified as a key for a session route or a server-
side policy selection. The simplest way to adapt those cases is to use a
'label_prefix' instead of the 'label' attribute. Alternatively, the
'label' attribute may used by appending " -> " (note the whitespace).
Fixes#2171
This is a redesign of the root and parent interfaces to eliminate
blocking RPC calls.
- New session representation at the parent (base/session_state.h)
- base-internal root proxy mechanism as migration path
- Redesign of base/service.h
- Removes ancient 'Connection::KEEP_OPEN' feature
- Interface change of 'Child', 'Child_policy', 'Slave', 'Slave_policy'
- New 'Slave::Connection'
- Changed child-construction procedure to be compatible with the
non-blocking parent interface and to be easier to use
- The child's initial LOG session, its binary ROM session, and the
linker ROM session have become part of the child's envirenment.
- Session upgrading must now be performed via 'env.upgrade' instead
of performing a sole RPC call the parent. To make RAM upgrades
easier, the 'Connection' provides a new 'upgrade_ram' method.
Issue #2120
This patch fixes a race condition triggered by the thread test running
on Linux inside VirtualBox. The 'test_stack_alloc' sporadically produced
one of two errors: A segfault in the 'Thread::deinit_platform_thread' on
the attempt to access the 'native_thread' of the to-be-destructed thread
(this data structure is located on the thread's stack). Or, an error
message about a region conflict within the stack area.
The problem was that two instances of 'Region_map_mmap' issued a
sequence of munmap and mmap each. Even though each instance locked the
attach/detach operations, the lock was held per instance. In a situation
where two instances performed attach/detach operations in parallel, the
syscall sequences could interfere with each other.
In the test scenario, the two region-map instances are the test's
address space and the stack area. When creating a thread, the thread's
trace-control dataspace is attached at an arbitrary place (picked by
the Linux kernel) within the address space whereas the stack is attached
at the stack area. The problem is the following sequence:
Thread A wants to destruct a thread:
1. Remove stack from stack area
(issue unmap syscall)
2. Preserve virtual address range that was occupied from the stack
so that Linux won't use it
(issue mmap syscall)
Thread B wants to construct a thread:
1. Request trace-control dataspace from CPU session
2. Attach trace-control dataspace to address space at a location
picked by the Linux kernel
(issue mmap syscall)
The problem occurs when thread B's second step is executed in between
the steps 1 and 2 of thread A and the Linux kernel picks the
just-unmapped address as the location for the new trace-control mapping.
Now, the trace control dataspace is mapped at the virtual address that
was designated for the stack of the to-be-created thread, and the
attempt to map the real stack fails.
The patch fixes the problem by replacing the former region-map-local
locks by a component-global lock.
Furthermore, it cleans up core's implementation of the support function
for the region-map-mmap implementation, eliminating the temporary
unlocking of the region-map lock during RPC.
Instead of solving the problem to deliver ROM modules to core while booting
differently for the several kernels (multi-boot, elfweaver, core re-linking),
this commit unifies the approaches. It always builds core as a library, and
after all binaries are built from a run-script, the run-tool will link an
ELF image out of the core-library and all boot modules. Thereby, core can
access its ROM modules directly.
This approach now works for all kernels except Linux.
With this solution, there is no [build_dir]/bin/core binary available anymore.
For debugging purposes you will find a core binary without boot modules, but
with debug symbols under [run_dir].core.
Fix#2095
base generic code:
* Remove unused verbosity code from mmio framework
* Remove escape sequence end heuristic from LOG
* replace Core_console with Core_log (no format specifiers)
* move test/printf to test/log
* remove `printf()` tests from the log test
* check for exact match of the log test output
base-fiasco:
* remove unused Fiasco::print_l4_threadid function
base-nova:
* remove unused hexdump utility from core
base-hw:
* remove unused Kernel::Thread::_print_* debug utilities
* always print resource summary of core during startup
* remove Kernel::Ipc_node::pd_label (not used anymore)
base*:
* Turn `printf`,`PWRN`, etc. calls into their log equivalents
Ref #1987Fix#2119
Besides adapting the components to the use of base/log.h, the patch
cleans up a few base headers, i.e., it removes unused includes from
root/component.h, specifically base/heap.h and
ram_session/ram_session.h. Hence, components that relied on the implicit
inclusion of those headers have to manually include those headers now.
While adjusting the log messages, I repeatedly stumbled over the problem
that printing char * arguments is ambiguous. It is unclear whether to
print the argument as pointer or null-terminated string. To overcome
this problem, the patch introduces a new type 'Cstring' that allows the
caller to express that the argument should be handled as null-terminated
string. As a nice side effect, with this type in place, the optional len
argument of the 'String' class could be removed. Instead of supplying a
pair of (char const *, size_t), the constructor accepts a 'Cstring'.
This, in turn, clears the way let the 'String' constructor use the new
output mechanism to assemble a string from multiple arguments (and
thereby getting rid of snprintf within Genode in the near future).
To enforce the explicit resolution of the char * ambiguity, the 'char *'
overload of the 'print' function is marked as deleted.
Issue #1987
Thread stacks with less than 4K usable space are insufficient for our
implementation of Linux exception signal handling. If such a unusually
small stack overflows the SIGSEGV handler will not be able to print the
diagnostic message leaving no hint of the cause of the stuck process.
Conveying the ROM filename as the final label element simplifies
routing policy and session construction.
Annotations by nfeske:
This commit also changes the ROM session to use base/log.h instead of
base/printf.h, which produced build error of VirtualBox because the
vbox headers have a '#define Log', which collides with the content of
base/log.h. Hence, this commit has to take precautions to resolve this
conflict.
The commit alse refines the previous session-label change by adding a
new 'Session_label::prefix' method and removing the use of 'char const *'
from this part of the API.
Fixes#1787
This patch establishes the sole use of generic headers across all
kernels. The common 'native_capability.h' is based on the version of
base-sel4. All traditional L4 kernels and Linux use the same
implementation of the capability-lifetime management. On base-hw, NOVA,
Fiasco.OC, and seL4, custom implementations (based on their original
mechanisms) are used, with the potential to unify them further in the
future.
This change achieves binary compatibility of dynamically linked programs
across all kernels.
Furthermore, the patch introduces a Native_capability::print method,
which allows the easy output of the kernel-specific capability
representation using the base/log.h API.
Issue #1993
This patch alleviates the need for a Native_capability::Dst at the API
level. The former use case of this type as argument to
Deprecated_env::reinit uses the opaque Native_capability::Raw type
instead. The 'Raw' type contains the portion of the capability that is
transferred as-is when delegating the capability (i.e., when installing
the parent capability into a new component, or when installing a new
parent capability into a new forked Noux process). This information can
be retrieved via the new Native_capability::raw method.
Furthermore, this patch moves the functions for retriving the parent
capability to base/internal/parent_cap.h, which is meant to be
implemented in platform-specific ways. It replaces the former set of
startup/internal/_main_parent_cap.h headers.
Issue #1993
The alternate stack must use the stack area as, e.g., Thread::myself()
depends on this property. Hybrid components do not depend on this
property and, therefore, use a static stack buffer.
Fixes#1935
This patch introduces the Genode::raw function that prints output
directly via a low-level kernel mechanism, if available.
On base-linux, it replaces the former 'raw_write_str' function.
On base-hw, it replaces the former kernel/log.h interface.
Fixes#2012
This patch moves the thread operations from the 'Cpu_session'
to the 'Cpu_thread' interface.
A noteworthy semantic change is the meaning of the former
'exception_handler' function, which used to define both, the default
exception handler or a thread-specific signal handler. Now, the
'Cpu_session::exception_sigh' function defines the CPU-session-wide
default handler whereas the 'Cpu_thread::exception_sigh' function
defines the thread-specific one.
To retain the ability to create 'Child' objects without invoking a
capability, the child's initial thread must be created outside the
'Child::Process'. It is now represented by the 'Child::Initial_thread',
which is passed as argument to the 'Child' constructor.
Fixes#1939
The recent move of the initial three region maps into the PD session
breaks the noux.run test on Linux because the address spaces are locally
managed on this platform but the generic code of Noux still tries to
execute the regular procedure of creating the virtualized PD session for
a new Noux process. This patch handles a corner case that occurs on
Linux but no other platform. It enables the successful creation of the
virtualized PD session so that the test runs to completion. Still noux
on Linux remains to be limited to non-forking programs.
Issue #1938
It turns out that the name function does not have much use in practice
except for naming the thread of the component's initial entrypoint. For
dynamically linked components, this thread is created by the dynamic
linker. It is named "ep" in these cases. Considering that we will
eventually turn all regular components into dynamically linked
executables, the additional information provided by the
Component::name() function remains unused. So it is better to not bother
the component developers with adding boilerplate code.