With this patch the 'GNU Project Debugger' (GDB) can be built for Noux.
The included run script connects GDB and GDB monitor via a cross-link
terminal and allows interactive source-level debugging of the GDB monitor
test application on Genode.
Fixes#280.
This patch extends the RAM session interface with the ability to
allocate DMA buffers. The client specifies the type of RAM dataspace to
allocate via the new 'cached' argument of the 'Ram_session::alloc()'
function. By default, 'cached' is true, which correponds to the common
case and the original behavior. When setting 'cached' to 'false', core
takes the precautions needed to register the memory as uncached in the
page table of each process that has the dataspace attached.
Currently, the support for allocating DMA buffers is implemented for
Fiasco.OC only. On x86 platforms, it is generally not needed. But on
platforms with more relaxed cache coherence (such as ARM), user-level
device drivers should always use uncacheable memory for DMA transactions.
This patch allows to configure the amount of RAM that GDB monitor should
preserve for itself. The configuration syntax looks as follows:
<start name="gdb_monitor">
<resource name="RAM" quantum="1G"/>
<config>
<target name="noux">
<preserve name="RAM" quantum="2M"/>
...
</config>
</start>
Fixes#190.
With this patch clients of the RM service can state if they want a mapping
to be executable or not. This allows dataspaces to be mapped as
non-executable on Linux by default and as executable only if needed.
Partially fixes#176.
With this patch GDB monitor provides a 'config' file to the target. Its
content can be defined in the <config> sub node of the <target> XML node.
Fixes#179.
This patch introduces support for ROM sessions that update their
provided data during the lifetime of the session. The 'Rom_session'
interface had been extended with the new 'release()' and 'sigh()'
functions, which are needed to support the new protocol. All ROM
services have been updated to the new interface.
Furthermore, the patch changes the child policy of init
with regard to the handling of configuration files. The 'Init::Child'
used to always provide the ROM dataspace with the child's config file
via a locally implemented ROM service. However, for dynamic ROM
sessions, we need to establish a session to the real supplier of the ROM
data. This is achieved by using a new 'Child_policy_redirect_rom_file'
policy to handle the 'configfile' rather than handling the 'configfile'
case entirely within 'Child_config'.
To see the new facility in action, the new 'os/run/dynamic_config.run'
script provides a simple scenario. The config file of the test program
is provided by a service, which generates and updates the config data
at regular intervals.
In addition, new support has been added to let slaves use dynamic
reconfiguration. By using the new 'Child_policy_dynamic_rom_file', the
configuration of a slave can be changed dynamically at runtime via the
new 'configure()' function.
The config is provided as plain null-terminated string (instead of a
dataspace capability) because we need to buffer the config data anyway.
So there is no benefit of using a dataspace. For buffering configuration
data, a 'Ram_session' must be supplied. If no 'Ram_session' is specified
at construction time of a 'Slave_policy', no config is supplied to the
slave (which is still a common case).
An example for dynamically reconfiguring a slave is provided by
'os/run/dynamic_config_slave.run'.
- Remove example application source code files which also exist in contrib
- Outsource commonly used parts from target.mk files
- Store the current Qt version only in one place
- Add run scripts for the example applications
Fixes#127.
The patch fixes a corner-case problem with using the two-byte 'INT 0'
instruction for breakpoints. The fix changes the breakpoint instruction
to the single-byte 'HLT'. 'HLT' is a privileged instruction and triggers
an exception when executed in user mode. Patch by Christian Prochaska.