When building Genode for VEA9X4 as micro-hypervisor protected by the ARM
TrustZone hardware we ran into limitations regarding our basic daily
testing routines. The most significant is that, when speaking about RAM
partitioning, the only available options are to configure the whole SRAM
to be secure and the whole DDR-RAM to be non-secure or vice versa. The
SRAM however provides only 32 MB which isn't enough for both a
representative non-secure guest OS or a secure Genode that is still
capable of passing our basic tests. This initiated our decision to
remove the VEA9X4 TrustZone-support.
Fixes#1351
The build config for core is now provided through libraries to enable
implicit config composition through specifiers and thereby avoid
consideration of inappropriate targets.
fix#1199
Until now, the HW platform support for the TrustZone features of the
i.MX53 boards could only be used, when adding a "trustzone" SPEC variable
manually. This commit adds a create_builddir target for HW i.MX53 with
TrustZone features enabled, fo convenience reasons.
The new 'select_from_ports' function allows a target description file to
query the path to an installed port. All ports are stored in a central
location specified as CONTRIB_DIR. By default, CONTRIB_DIR is defined
as '<genode-dir>/contrib'. Ports of 3rd-party source code are managed
using the tools at '<genode-dir>/tool/ports/'.
Issue #1082
This patch changes the top-level directory layout as a preparatory
step for improving the tools for managing 3rd-party source codes.
The rationale is described in the issue referenced below.
Issue #1082
Since dde_linux now contains the port of the Linux IP stack available for all
Genode base-* platforms move the repository out of drivers_arm and drivers_x86
build.conf to the optional build.conf (available to all platforms).
This patch introduces a new platform 'linux_arm' for building and running
Genode/Linux on an ARM device.
Known limitations:
- libc 'setjmp()'/'longjmp()' doesn't currently save/restore floating
point registers
Fixes#746.
This base platform is no longer maintained.
For supporting the Microblaze CPU in the future, we might consider
integrating support for this architecture into base-hw. Currently
though, there does not seem to be any demand for it.
This should ensure that the directory is created before trying to
create a file within it.
This hopefully fixes errors like the following when using parallel
builds:
checking library dependencies...
/bin/bash: line 19: var/libdeps: No such file or directory
make[5]: *** [init_libdep_file] Error 1
There is no obvious reason for having two different SPEC variables, definitions,
and pathes for the Pandaboard platform. It even lead to problems regarding the
omap4 framebuffer driver (look at issue #505 and #506).
The bash-builtin 'pwd' command uses the 'st_dev' and 'st_ino' members of
the 'stat' struct to compare the path from the 'PWD' environment variable
with the path returned by 'getcwd()'. These members don't get set
correctly in Noux and therefore the 'pwd' command sometimes returns wrong
results when building Genode in Noux. With this patch the 'CURDIR' make
variable gets used instead of calling 'pwd'.
Fixes#454.
The 'build.mk' file checks if the tool chain to be used supports the
'-static' and '-fno-stack-protector' flags, but this check always fails
for the current Genode tool chain because it cannot create executable
files without explicitly specifying the 'crt0' and library files to be
linked, which the check doesn't.
This patch removes the compiler check.
Fixes#358.
Use git to get recent kernels from github. Adjust NOVA patch to compile
with recent github version. Patch and use makefile of NOVA microkernel
to avoid duplicated (and outdated) makefile in Genode
Furthermore, this patch adds support for using NOVA on x86_64. The
generic part of the syscall bindings has been moved to
'base-nova/include/nova/syscall-generic.h'. The 32/64-bit specific
parts are located at 'base-nova/include/32bit/nova/syscalls.h' and
'base-nova/include/64bit/nova/syscalls.h' respectively.
On x86_64, the run environment boots qemu using the Pulsar boot loader
because GRUB legacy does not support booting 64bit ELF executables.
In addition to the NOVA-specific changes in base-nova, this patch
rectifies compile-time warnings or build errors in the 'ports' and
'libports' repositories that are related to NOVA x86_64 (i.e., Vancouver
builds for 32bit only and needed an adaptation to NOVAs changed
bindings)
Fixes#233, fixes#234
The new 'dde_linux' repository will host device drivers ported from the
Linux kernel. In contrast to the original 'linux_drivers' repository,
'dde_linux' does not contain any 3rd-party source code. To download the
Linux kernel source code and extract the drivers, execute the 'make
prepare' rule of the top-level Makefile. The initial version of the
'dde_linux' repository comes with an USB driver. The porting methodology
follows the path of the Intel GEM port. Instead of attempting to provide
a generic Linux environment that works across drivers, each driver comes
with a specially tailored DDE.
The DDE consists of Genode-specific implementations of Linux API
functions as declared in 'lx_emul.h'. Most of these functions are
dummies that must merely be provided to resolve dependencies at the
linking stage. They are called by unused code-paths.
As of now, the USB driver support UHCI, EHCI on the x86_32 platform. I
exposes USB HID devices and USB storage devices via Genode's input-session
and block-session respectively.
The USB driver is accompanied with two run scripts 'run/usb_hid.run' and
'run/usb_storage.run'.
The build system overlays multiple source trees (repositories) such that
they can shadow libraries and include search paths. This patch extends
the shadowing concept to build targets. Furthermore, it streamlines the
build stage for generating library depenencies, reducing the processing
time of this stage by 10-20 percent. Fixes#165.