This patch cleans up the implementation of the sliced heap, adds a
constructor that takes references instead of pointers, and adds the
function 'meta_data_size' to determine the meta-data overhead per block.
The latter can be used to dimension slab allocators such that slab
blocks use whole pages.
The original 'Env' interface as returned by 'Genode::env()' has been
renamed to 'Env_deprecated' and moved to deprecated/env.h. The new version
of base/env.h contains the interface passed to modern components that
use the component API via base/component.h.
Issue #1832
This patch makes the former 'Process' class private to the 'Child'
class and changes the constructor of the 'Child' in a way that
principally enables the implementation of single-threaded runtime
environments that virtualize the CPU, PD, and RAM services. The
new interfaces has become free from side effects. I.e., instead
of implicitly using Genode::env()->rm_session(), it takes the reference
to the local region map as argument. Also, the handling of the dynamic
linker via global variables is gone. Now, the linker binary must be
provided as constructor argument.
Fixes#1949
This patch replaces the former 'Pd_session::bind_thread' function by a
PD-capability argument of the 'Cpu_session::create_thread' function, and
removes the ancient thread-start protocol via 'Rm_session::add_client' and
'Cpu_session::set_pager'. Threads are now bound to PDs at their creation
time and implicitly paged according to the address space of the PD.
Note the API change:
This patch changes the signature of the 'Child' and 'Process' constructors.
There is a new 'address_space' argument, which represents the region map
representing the child's address space. It is supplied separately to the
PD session capability (which principally can be invoked to obtain the
PD's address space) to allow the population of the address space
without relying on an 'Pd_session::address_space' RPC call.
Furthermore, a new (optional) env_pd argument allows the explicit
overriding of the PD capability handed out to the child as part of its
environment. It can be used to intercept the interaction of the child
with its PD session at core. This is used by Noux.
Issue #1938
We will eventually remove the delivery of the number of occurred signals
to the recipient. There haven't been any convincing use cases for this
feature. In the contrary, it actually led to wrong design choices in the
past where the rate of signals carried information (such as the progress
of time) that should better be obtained via an explicit RPC call.
The old 'Signal_rpc_member' template retains the old interface for now.
But the new 'Signal_handler' omits the 'unsigned' argument from the
handler function.
This patch integrates three region maps into each PD session to
reduce the session overhead and to simplify the PD creation procedure.
Please refer to the issue cited below for an elaborative discussion.
Note the API change:
With this patch, the semantics of core's RM service have changed. Now,
the service is merely a tool for creating and destroying managed
dataspaces, which are rarely needed. Regular components no longer need a
RM session. For this reason, the corresponding argument for the
'Process' and 'Child' constructors has been removed.
The former interface of the 'Rm_session' is not named 'Region_map'. As a
minor refinement, the 'Fault_type' enum values are now part of the
'Region_map::State' struct.
Issue #1938
When using the Allocator interface, one can't tell which alignment
resulting allocations fulfill. However, at least on ARM, given the
architectural alignment requirements of ARM memory accesses, one wants
memory allocations (what allocators are for in most cases) to be word
aligned automatically. Previously, at least the AVL allocator simply
called alloc_aligned without defining align in its alloc implementation.
This led to unaligned access faults (the default was 0) when using the
AVL allocator as Allocator (as done in the metadata management of a SLAB
of an AVL that uses the AVL as backing store). To avoid such pitfalls
in the future, we force users of alloc_aligned to always specify align
(why use alloc_aligned without align anyway).
Ref #1941
Besides unifying the Msgbuf_base classes across all platforms, this
patch merges the Ipc_marshaller functionality into Msgbuf_base, which
leads to several further simplifications. For example, this patch
eventually moves the Native_connection_state and removes all state
from the former Ipc_server to the actual server loop, which not only
makes the flow of control and information much more obvious, but is
also more flexible. I.e., on NOVA, we don't even have the notion of
reply-and-wait. Now, we are no longer forced to pretend otherwise.
Issue #1832
This patch changes the organization of the slab blocks within the slab
allocator. Originally, blocks were kept in a list sorted by the number
of free entries. However, it turned out that the maintenance of this
invariant involves a lot of overhead in the presence of a large number
of blocks. The new implementation manages blocks within a ring in no
particular order and maintains a pointer to the block where the next
allocation is attempted. This alleviates the need for sorting blocks
when allocating and deallocating.
Fixes#1908
This patch ensures that the 'Allocator_avl' releases all memory obtained
from the meta-data allocator at destruction time. If allocations are
still dangling, it produces a warning, hinting at possible memory leaks.
Finally, it properly reverts all 'add_range' operations.
This patch makes sure that the dataspace pool is flushed before
destructing the heap-local allocator-avl instance. With the original
destruction order, the allocator would still contain dangling
allocations on the account of the dataspace pool when destructed. In
practice, this caused no problem because the underlying backing store is
eventually freed on the destruction of the pool. But it triggers a
runtime warning of the allocator since it has become more strict with
regard to dangling allocations.
This commit introduces the new `Component` interface in the form of the
headers base/component.h and base/entrypoint.h. The os/server.h API
has become merely a compatibilty wrapper and will eventually be removed.
The same holds true for os/signal_rpc_dispatcher.h. The mechanism has
moved to base/signal.h and is now called 'Signal_handler'.
Since the patch shuffles headers around, please do a 'make clean' in the
build directory.
Issue #1832
This commit replaces the stateful 'Ipc_client' type with the plain
function 'ipc_call' that takes all the needed state as arguments.
The stateful 'Ipc_server' class is retained but it moved from the public
API to the internal ipc_server.h header. The kernel-specific
implementations were cleaned up and simplified. E.g., the 'wait'
function does no longer exist. The badge and exception code are no
longer carried in the message buffers but are handled in kernel-specific
ways.
Issue #610
Issue #1832
This patch moves details about the stack allocation and organization
the base-internal headers. Thereby, I replaced the notion of "thread
contexts" by "stacks" as this term is much more intuitive. The fact that
we place thread-specific information at the bottom of the stack is not
worth introducing new terminology.
Issue #1832
This patch integrates the functionality of the former CAP session into
the PD session and unifies the approch of supplementing the generic PD
session with kernel-specific functionality. The latter is achieved by
the new 'Native_pd' interface. The kernel-specific interface can be
obtained via the Pd_session::native_pd accessor function. The
kernel-specific interfaces are named Nova_native_pd, Foc_native_pd, and
Linux_native_pd.
The latter change allowed for to deduplication of the
pd_session_component code among the various base platforms.
To retain API compatibility, we keep the 'Cap_session' and
'Cap_connection' around. But those classes have become mere wrappers
around the PD session interface.
Issue #1841
This patch removes the SIGNAL service from core and moves its
functionality to the PD session. Furthermore, it unifies the PD service
implementation and terminology across the various base platforms.
Issue #1841
When unblocking a thread in Semaphore::up() while holding the fifo meta-data
lock, it might happen that the lock holder gets destroyed by the one it was
unblocking. This happened for instance in the pthread test in the past, where
thread destruction was synchronized via a semaphore. There is no need to hold
the lock during the unblock operation, so we should do it outside the critical
section.
Fix#1333
'block_for_signal' and 'pending_signal' now set pending flag in signal context
in order to determine pending signal. The context list is also used by the
'Signal_receiver' during destruction.
Fixes#1738
Currently, when a signal arrives in the main thread, the signal dispatcher is
retrieved and called from the main thread, the dispatcher uses a proxy object
that in turn sends an RPC to the entry point. This becomes a problem when the
entry point destroys the dispatcher object, before the dispatch function has
been called by the main thread. Therefore, the main thread should simply send an
RPC to the entry point upon signal arrival and the dispatching should be handled
solely by the entry point.
Issue #1738
Holding the object pool's lock while trying to obtain an object's lock
can leave to dead-lock situations, when more than one thread tries to
access multiple objects at once (e.g.: when transfer_quota gets called
simultanously by the init and entrypoint thread in core). To circumvent
holding the object pool lock too long, but access object pointers safely
on the other hand, this commit updates the object pool implementation
to use weak pointers during the object retrieval.
Fix#1704
* Move the Synced_interface from os -> base
* Align the naming of "synchronized" helpers to "Synced_*"
* Move Synced_range_allocator to core's private headers
* Remove the raw() and lock() members from Synced_allocator and
Synced_range_allocator, and re-use the Synced_interface for them
* Make core's Mapped_mem_allocator a friend class of Synced_range_allocator
to enable the needed "unsafe" access of its physical and virtual allocators
Fix#1697
Instead of returning pointers to locked objects via a lookup function,
the new object pool implementation restricts object access to
functors resp. lambda expressions that are applied to the objects
within the pool itself.
Fix#884Fix#1658
This commit eliminates the mutual interlaced taking of destruction lock,
list lock and weak pointer locks that could lead to a dead-lock situation
when a lock pointer was tried to construct while a weak object is in
destruction progress.
Now, all weak pointers are invalidated and dequeued at the very
beginning of the weak object's destruction. Moreover, before a weak pointer
gets invalidated during destruction of a weak object, it gets dequeued, and
the list lock is freed again to avoid the former dead-lock.
Fix#1607
Up to now it was not possible to trace threads that use a different
Cpu_session rather than env()->cpu_session() (as done by VirtualBox).
This problem is now solved by setting the Cpu_session explicitly when
creating the event logger and attaching the trace control area when
creating the thread.
Fixes#1618.
The recent change of the TRACE session interface triggered the
following warning:
/home/no/src/genode/repos/base/include/base/ipc.h:79:4: warning: ‘ret’ may be used uninitialized in this function [-Wmaybe-uninitialized]
*reinterpret_cast<T *>(&_sndbuf[_write_offset]) = value;
^
In file included from /home/no/src/genode/repos/base/src/core/include/trace/session_component.h:19:0,
from /home/no/src/genode/repos/base/src/core/trace_session_component.cc:15:
/home/no/src/genode/repos/base/include/base/rpc_server.h:132:42: note: ‘ret’ was declared here
typename This_rpc_function::Ret_type ret;
The warning occurs for basic return types (like size_t), which are
indeed not initialized. The variable gets its value assigned by the
corresponding 'call_member' overload, to which the variable is passed as
reference. But the compiler apparently is not able to detect this assignment.
Declaring 'ret' with a C++11-style default initializer fixes the warning.
This patch enable clients of core's TRACE service to obtain the
execution times of trace subjects (i.e., threads). The execution time is
delivered as part of the 'Subject_info' structure.
Right now, the feature is available solely on NOVA. On all other base
platforms, the returned execution times are 0.
Issue #813
Currently, libc_noux includes the 'base/src/base/env/platform_env.h' file
to be able to reinitialize the environment using the 'Platform_env'
interface. For base-linux, a special version of this file exists and the
inclusion of the generic version in libc_noux causes GCC 4.9 to make wrong
assumptions about the memory layout of the 'Env' object returned by
'Genode::env()'.
This commit moves the reinitialization functions to the 'Env' interface to
avoid the need to include the 'platform_env.h' file in libc_noux.
Fixes#1510
If a null-terminated string exactly of length MAX (0 byte included) is
provided, it will be handled as invalid because of wrong string size length
checks.
Commit fixes this.
Discovered during #1486 development.
Physical CPU quota was previously given to a thread on construction only
by directly specifying a percentage of the quota of the according CPU
session. Now, a new thread is given a weighting that can be any value.
The physical counter-value of such a weighting depends on the weightings
of the other threads at the CPU session. Thus, the physical quota of all
threads of a CPU session must be updated when a weighting is added or
removed. This is each time the session creates or destroys a thread.
This commit also adapts the "cpu_quota" test in base-hw accordingly.
Ref #1464
This patch adds const qualifiers to the functions Allocator::consumed,
Allocator::overhead, Allocator::avail, and Range_allocator::valid_addr.
Fixes#1481
* Instead of using local capabilities within core's context area implementation
for stack allocation/attachment, simply do both operations while stack gets
attached, thereby getting rid of the local capabilities in generic code
* In base-hw the UTCB of core's main thread gets mapped directly instead of
constructing a dataspace component out of it and hand over its local
capability
* Remove local capability implementation from all platforms except Linux
Ref #1443
The 'Thread_base' class is constructed differently in some special cases
like the main thread or a thread that use a distinct CPU session. The
official API, however, should be clean from such artifacts. Hence, I
separated the official constructor from the other cases.
This patch changes the Shared_object::lookup function to use a
reinterpret_cast instead of a static_cast to allow the conversion
from symbol addresses to arbitrary pointers.
In the init configuration one can configure the donation of CPU time via
'resource' tags that have the attribute 'name' set to "CPU" and the
attribute 'quantum' set to the percentage of CPU quota that init shall
donate. The pattern is the same as when donating RAM quota.
! <start name="test">
! <resource name="CPU" quantum="75"/>
! </start>
This would cause init to try donating 75% of its CPU quota to the child
"test". Init and core do not preserve CPU quota for their own
requirements by default as it is done with RAM quota.
The CPU quota that a process owns can be applied through the thread
constructor. The constructor has been enhanced by an argument that
indicates the percentage of the programs CPU quota that shall be granted
to the new thread. So 'Thread(33, "test")' would cause the backing CPU
session to try to grant 33% of the programs CPU quota to the thread
"test". By now, the CPU quota of a thread can't be altered after
construction. Constructing a thread with CPU quota 0 doesn't mean the
thread gets never scheduled but that the thread has no guaranty to receive
CPU time. Such threads have to live with excess CPU time.
Threads that already existed in the official repositories of Genode were
adapted in the way that they receive a quota of 0.
This commit also provides a run test 'cpu_quota' in base-hw (the only
kernel that applies the CPU-quota scheme currently). The test basically
runs three threads with different physical CPU quota. The threads simply
count for 30 seconds each and the test then checks wether the counter
values relate to the CPU-quota distribution.
fix#1275
So far, the lifetime-management utilities 'Weak_ptr' and 'Locked_ptr'
had been preserved for core-internal use only. However, the utilities
are handy for many use cases outside of core where object lifetimes
must be managed. So we promote them to the public API.
When a page fault cannot be resolved, the GDB monitor can get a hint about
which thread faulted by evaluating the thread state object returned by
'Cpu_session::state()'. Unfortunately, with the current implementation,
the signal which informs GDB monitor about the page fault is sent before
the thread state object of the faulted thread has been updated, so it
can happen that the faulted thread cannot be determined immediately
after receiving the signal.
With this commit, the thread state gets updated before the signal is sent.
At least on base-nova it can also happen that the thread state is not
accessible yet after receiving the page fault notification. For this
reason, GDB monitor needs to retry its query until the state is
accessible.
Fixes#1206.
On ARM it's relevant to not only distinguish between ordinary cached memory
and write-combined one, but also having non-cached memory too. To insert the
appropriated page table entries e.g.: in the base-hw kernel, we need to preserve
the information about the kind of memory from allocation until the pager
resolves a page fault. Therefore, this commit introduces a new Cache_attribute
type, and replaces the write_combined boolean with the new type where necessary.
By using &&, we prevent the accidental copying of deallocator instances,
passed to the destroy function. We always want to take the deallocator
as reference or pointer.
This patch changes the top-level directory layout as a preparatory
step for improving the tools for managing 3rd-party source codes.
The rationale is described in the issue referenced below.
Issue #1082