The run tool now by default checks configurations with target-specific
XML schemata. Each component may define a config schema file in its
target.mk via the CONFIG_XSD variable. When the run tool has checked an
configuration of an init instance, it additionally goes through the
start nodes of the config. For each start node it checks whether there
is an XSD file that matches. If so, the run tool also checks the config
of the start node (if existant). This is done recursively. I.e., also
the child configs of a sub-init of a sub-init of the top-level init
receive a config check.
Issue #2600
In the past, we had the lock of the context we found for the rest of the scope
of pending_signal. Now we use for_each_locked to find the context and the
lock is released as soon as we return from for_each_locked. Thus, we need to
lock the context again before returning it to avoid that the copy constructor
during the return reads values that are currently changing.
Fixes#2532
As noted above the former enum for the local-attachment address we
discovered address clashes on current Linux installations, esp. 32-bit
runtime on 64-bit Linux. The local_attach_addr is now configurable in
the run script and the memory maps heuristics were removed.
* Instead of always re-load page-tables when a thread context is switched
only do this when another user PD's thread is the next target,
core-threads are always executed within the last PD's page-table set
* remove the concept of the mode transition
* instead map the exception vector once in bootstrap code into kernel's
memory segment
* when a new page directory is constructed for a user PD, copy over the
top-level kernel segment entries on RISCV and X86, on ARM we use a designated
page directory register for the kernel segment
* transfer the current CPU id from bootstrap to core/kernel in a register
to ease first stack address calculation
* align cpu context member of threads and vms, because of x86 constraints
regarding the stack-pointer loading
* introduce Align_at template for members with alignment constraints
* let the x86 hardware do part of the context saving in ISS, by passing
the thread context into the TSS before leaving to user-land
* use one exception vector for all ARM platforms including Arm_v6
Fix#2091
* introduce new syscall (core-only) to create privileged threads
* take the privilege level of the thread into account
when doing a context switch
* map kernel segment as accessable for privileged code only
Ref #2091
* introduces central memory map for core/kernel
* on 32-bit platforms the kernel/core starts at 0x80000000
* on 64-bit platforms the kernel/core starts at 0xffffffc000000000
* mark kernel/core mappings as global ones (tagged TLB)
* move the exception vector to begin of core's binary,
thereby bootstrap knows from where to map it appropriately
* do not map boot modules into core anymore
* constrain core's virtual heap memory area
* differentiate in between user's and core's main thread's UTCB,
which now resides inside the kernel segment
Ref #2091
In the past, a signal context, that was chosen for handling by
'Signal_receiver::pending_signal and always triggered again before
the next call of 'pending_signal', caused all other contexts behind
in the list to starve. This was the case because 'pending_signal'
always took the first pending context in its context list.
We avoid this problem now by handling pending signals in a round-robin
fashion instead.
Ref #2532
Ensure that the timer does not handle timeouts again within 1000
microseconds after the last handling of timeouts. This makes denial of
service attacks harder. This commit does not limit the rate of timeout
signals handled inside the timer but it causes the timer to do it less
often. If a client continuously installs a very small timeout at the
timer it still causes a signal to be submitted to the timer each time
and some extra CPU time to be spent in the internal handling method. But
only every 1000 microseconds this internal handling causes user timeouts
to trigger.
If we would want to limit also the call of the internal handling method
to ensure that CPU time is spent beside the RPCs only every 1000
microseconds, things would get more complex. For instance, on NOVA
Time_source::schedule_timeout(0) must be called each time a new timeout
gets installed and becomes head of the scheduling queue. We cannot
simply overwrite the already running timeout with the new one.
Ref #2490
This patch merges two similar rules, which create content at 'include'
into a single rule. This prevents a possible race condition when
creating archives in parallel.
We moved the stack-area segment 128 MiB behind text and data to comply
with assumptions in the kernel ELF loader.
This commit also reenables static binaries on linux and removes the
unused stack_area.stdlib.ld script.
Fixes#2521
In nested scenarios like driver_manager.run, the initial session quota
for IO_PORT, IO_PORT, and IRQ sessions is expectedly insufficient.
However, the condition is properly handled by re-attemping the request
with a slightly increased quota. Still, core prints a warning each time
the request is denied for quota reasons, which spams the log. This patch
removes the non-critical message.