Until now, one distinct software generated IRQ per cpu was used to
send signals between cpus. As ARM's GIC has 16 software generated
IRQs only, and they need to be partitioned between secure/non-secure
TrustZone world as well as virtual and non-virtual worlds, we should
save them.
Ref #1405
* name irq controller memory mapped I/O regions consistently
in board descriptions
* move irq controller and timer memory mapped I/O region descriptions
from cpu class to board class
* eliminate artificial distinction between flavors of ARM's GIC
* factor cpu local initialization out of ARM's GIC interface description,
which is needed if the GIC is initialized differently e.g. for TrustZone
Ref #1405
The 'dest' target is renamed in the updated rump version to 'dest.stage'. This
triggered some building steps, even when the targets already existed.
Issue #1409
The handling of MMIO regions now supports more pathological cases with
weird cross references. Also, MMIO regions are releases after the
parsing is done.
Fixes#998
While booting up, some devices send garbage over the serial connection.
This can result in an unexpected EOF event within expect(1). A filter
program may be specified with '--log-serial-filter' to circumvent this
problem. Then, the output of the serial program is piped through
the filter, which may sanitize the character stream.
Fixes#1395.
Setting the ACTLR.SMP bit also without SMP support fastens RAM access
significantly. A proper solution would implement SMP support which must enable
the bit anyway.
Fixes#1353
and move it close to run_genode_until implementation.
Somehow the "match_max -d" gets ignored if it is to far away and some
our run scripts fails because the buffer contains not all information
(seen for affinity.run on a 8 core machine)
This is needed at least by rump_ext2.run as it uses the perf-counter
in the jitterentropy-lib. On other platforms the perf-counter gets enabled
by the kernel by default. However, on HW, we keep the specifier to allow users
to disable it easily (e.g. for security reasons).
Ref #1393
When returning early on directory operations, file systems that might
be able to handle the request but come after the current one are not
tried.
Fixes#1400.
Up to now Noux used the libc sleep functions, which actually is not
possible because the _nanosleep() function implemented by our libc
creates a new thread to handle the timeout. Noux childs may have
only one thread, e.g., the main thread, though. To fix this issue
sleeping is now handled directly by Noux. It is implemented by calling
select(2) with a timeout. This fix is needed for mutt(1), which calls
sleep when it prints a notification for the user.
Fixes#1374.
Since rump now requires large buffers of random numbers (>= 512 bytes), use the
jitterentropy library instead of the slow timer pseudo random number generation.
Fixes#1393
To circumvent compilation errors with the older L4Android Linux kernel
version, the ballooning driver is included in the more recent L4Linux
kernel only. Moreover, to be able to maintain L4Android / L4Linux in a more
convenient way, e.g. to apply patches valid for both versions, we use
the same git clone that is used for L4Linux instead of using the upstream
L4Android version by applying patches.
Fixes#1390
Instead of returning an uint64_t value, return a structured time stamp.
This change is only visible to components using Rtc_session directly.
Fixes#1381.
Up until now 'schedule_timeout' did only wait for the next signal to occur.
However, we might run into situations where there won't occur signals for longer
periods of time. Therefore, we took care of the respective timeout handling.
This commit also adds Genode's tracing support
Issue #1310
This has been broken for a while now. Use correct (global) signal transmission,
do not use local signal transmission, as signals seems to get lost.
Issue #1310