The new types in base/ram.h model different allocation scenarios and
error cases by mere C++ types without using exceptions. They are meant
to replace the former 'Ram_allocator' interface. As of now, the
'Unmapped_allocator' closely captures the former 'Ram_allocator'
semantics. The 'Constrained_allocator' is currently an alias for
'Unmapped_allocator' but is designated for eventually allocating
mapped RAM.
In contrast to the 'Ram_allocator' interface, which talked about
dataspace capabilites but left the lifetime management of the
allocated RAM to the caller, the new API represents an allocation
as a guard type 'Allocation', which deallocates on destruction by
default.
Allocation errors are captured by a 'Result' type that follows
the 'Attempt' pattern.
As a transitionary feature, the patch largely maintains API
compatibility with the original 'Ram_allocator' by providing
the original (exception-based) 'Ram_allocator::alloc' and
'Ram_allocator::free' methods as a wrapper around the new
'Ram::Constrained_allocator'. So components can be gradually
updated to the new 'Ram::' interface.
Issue #5502
- Remove exceptions
- Use 'Attr' struct for attach arguments
- Let 'attach' return 'Range' instead of 'Local_addr'
- Renamed 'Region_map::State' to 'Region_map::Fault'
Issue #5245Fixes#5070
The allocation of regions within the linker area is normally left to the
best-fit 'Allocator_avl', which happens to populate the linker area
starting with the binary followed by all loaded libraried with no gaps
in between.
When replacing the binary during execve, however, we need to ensure that
the new binary does not conflict with any library that stays resident
during execve. This patch tweaks the linker's region allocation scheme
such that these libraries are placed at the end of the linker area.
Issue #3481
This patch enhances the 'base/shared_object.h' interface of the dynamic
linker with the function 'for_each_loaded_object', which allows the
caller to obtain information about the currently loaded binary and
shared libraries.
The new interface is a base mechanism needed for implementing 'fork' in
the libc.
Issue #3478
The patch adjust the code of the base, base-<kernel>, and os repository.
To adapt existing components to fix violations of the best practices
suggested by "Effective C++" as reported by the -Weffc++ compiler
argument. The changes follow the patterns outlined below:
* A class with virtual functions can no longer publicly inherit base
classed without a vtable. The inherited object may either be moved
to a member variable, or inherited privately. The latter would be
used for classes that inherit 'List::Element' or 'Avl_node'. In order
to enable the 'List' and 'Avl_tree' to access the meta data, the
'List' must become a friend.
* Instead of adding a virtual destructor to abstract base classes,
we inherit the new 'Interface' class, which contains a virtual
destructor. This way, single-line abstract base classes can stay
as compact as they are now. The 'Interface' utility resides in
base/include/util/interface.h.
* With the new warnings enabled, all member variables must be explicitly
initialized. Basic types may be initialized with '='. All other types
are initialized with braces '{ ... }' or as class initializers. If
basic types and non-basic types appear in a row, it is nice to only
use the brace syntax (also for basic types) and align the braces.
* If a class contains pointers as members, it must now also provide a
copy constructor and assignment operator. In the most cases, one
would make them private, effectively disallowing the objects to be
copied. Unfortunately, this warning cannot be fixed be inheriting
our existing 'Noncopyable' class (the compiler fails to detect that
the inheriting class cannot be copied and still gives the error).
For now, we have to manually add declarations for both the copy
constructor and assignment operator as private class members. Those
declarations should be prepended with a comment like this:
/*
* Noncopyable
*/
Thread(Thread const &);
Thread &operator = (Thread const &);
In the future, we should revisit these places and try to replace
the pointers with references. In the presence of at least one
reference member, the compiler would no longer implicitly generate
a copy constructor. So we could remove the manual declaration.
Issue #465
A dataspace capability request to a ROM service may invalidate any
previously issued dataspace. Therefor no requests should be made while a
session dataspace is mapped. Reducing calls to the session also improves
performance where servicing a ROM request has a significant cost.
Fix#2418
This commit enables compile-time warnings displayed whenever a deprecated
API header is included, and adjusts the existing #include directives
accordingly.
Issue #1987
This is a redesign of the root and parent interfaces to eliminate
blocking RPC calls.
- New session representation at the parent (base/session_state.h)
- base-internal root proxy mechanism as migration path
- Redesign of base/service.h
- Removes ancient 'Connection::KEEP_OPEN' feature
- Interface change of 'Child', 'Child_policy', 'Slave', 'Slave_policy'
- New 'Slave::Connection'
- Changed child-construction procedure to be compatible with the
non-blocking parent interface and to be easier to use
- The child's initial LOG session, its binary ROM session, and the
linker ROM session have become part of the child's envirenment.
- Session upgrading must now be performed via 'env.upgrade' instead
of performing a sole RPC call the parent. To make RAM upgrades
easier, the 'Connection' provides a new 'upgrade_ram' method.
Issue #2120