By now, rump would query its available RAM quota to determine the
memory limit minus some RAM reserved for Genode meta-data. This
does not work when the VFS rump plugin is used as the available
quota belongs to the VFS server. In this case the memlimit should
be set by specifing the RAM in the plugin's config, e.g.:
! <vfs>
! <rump fs="ext2fs" ram="64M" writeabl="yes"/>
! </vfs>
Fixes#2783.
* integrate rump's contrib code into Genode's build system and build what is
required by Genode, only
* checkout needed NetBSD sources directly from CVS
fixes#2589
The run script did not consider the routing for the environment ROM
sessions for the test-iso component. It routed all ROM sessions -
including the ones for the executable and the dynamic linker - to
fs_rom. The patch also adds the cap quota definitions required since
version 17.05 and fixes a whitespace inconsistency between the test
program and the run script.
Thanks to Steven Harp for reporting!
This streamlines the Genode-specific interface for both 32-bit and
64-bit architectures and fixes dynamic-linking issue with the rump
VFS due to differing size_t types.
This patch unconditionally applies the labeling of sessions and thereby
removes the most common use case of 'Child_policy::filter_session_args'.
Furthermore, the patch removes an ambiguity of the session labels of
sessions created by the parent of behalf of its child, e.g., the PD
session created as part of 'Child' now has the label "<child-name>"
whereas an unlabeled PD-session request originating from the child
has the label "<child-name> -> ". This way, the routing-policy of
'Child_policy::resolve_session_request' can differentiate both cases.
As a consequence, the stricter labeling must now be considered wherever
a precise label was specified as a key for a session route or a server-
side policy selection. The simplest way to adapt those cases is to use a
'label_prefix' instead of the 'label' attribute. Alternatively, the
'label' attribute may used by appending " -> " (note the whitespace).
Fixes#2171
Besides adapting the components to the use of base/log.h, the patch
cleans up a few base headers, i.e., it removes unused includes from
root/component.h, specifically base/heap.h and
ram_session/ram_session.h. Hence, components that relied on the implicit
inclusion of those headers have to manually include those headers now.
While adjusting the log messages, I repeatedly stumbled over the problem
that printing char * arguments is ambiguous. It is unclear whether to
print the argument as pointer or null-terminated string. To overcome
this problem, the patch introduces a new type 'Cstring' that allows the
caller to express that the argument should be handled as null-terminated
string. As a nice side effect, with this type in place, the optional len
argument of the 'String' class could be removed. Instead of supplying a
pair of (char const *, size_t), the constructor accepts a 'Cstring'.
This, in turn, clears the way let the 'String' constructor use the new
output mechanism to assemble a string from multiple arguments (and
thereby getting rid of snprintf within Genode in the near future).
To enforce the explicit resolution of the char * ambiguity, the 'char *'
overload of the 'print' function is marked as deleted.
Issue #1987
The 'rump_cgd' server provides block level encryption for a block
session by employing the 'cgd(4)' device provided by the rumpkernel.
'rump_cgd' uses a Block_session to get access to an existing block
device and provides another Block_session to its clients. Each block
written or read by the client is transperently encrypted or decrypted
by the server.
For now 'rump_cgd' may only _configure_ a 'cgd' device but is unable
to generate a configuration. The used cipher is hardcoded to
_aes-cbc_ with a keysize of 256 bit. Furthermore the server is able to
serve one client only.
To ease the usage, its interface is modelled after the interface of
'cgdconfig(8)'. As implications thereof the key must have the same
format as used by 'cgdconfig'. That means the key is a base 64 encoded
string in which the first 4 bytes denote the actual length of the key
in bits (these 4 bytes are stored in big endian order).
Preparing a raw (e.g. without partition table) encrypted Ext2 disk
image is done by executing 'tool/rump':
! dd if=/dev/urandom of=/path/to/disk_image
! rump -c /path/to/disk_image # key is printed to stdout
! rump -c -k <key> -F ext2fs /path/to/disk_image
To use this disk image the following config snippet can be used:
! <start name="rump_cgd">
! <resource name="RAM" quantum="8M" />
! <provides><service name="Block"/></provides>
! <config action="configure">
! <params>
! <method>key</method>}
! <key>AAABAJhpB2Y2UvVjkFdlP4m44449Pi3A/uW211mkanSulJo8</key>
! </params>
! </config>
! <route>
! <service name="Block"> <child name="ahci"/> </service>
! <any-service> <parent/> <any-child/> </any-service>
! </route>
! </start>
the Block service provided by rump_cgd may be used by a file system
server in return:
! <start name="rump_fs">
! <resource name="RAM" quantum="16M"/>
! <provides><service name="File_system"/></provides>
! <config fs="ext2fs">
! <policy label="" root="/" writeable="yes"/>
! </config>
! <route>
! <service name="Block"> <child name="rump_cgd"/> </service>
! <any-service> <parent/> <any-child/> </any-service>
! </route>
! </start>
Since 'tool/rump' just utilizes the rumpkernel running on the host
system to do its duty there is a script called 'tool/cgdconf' that
extracts the key from a 'cgdconfig(8)' generated configuration file
and also is able to generade such a file from a given key. Thereby
the interoperabilty between 'rump_cgd' and the general rumpkernel
based tools is secured.
This patch changes the top-level directory layout as a preparatory
step for improving the tools for managing 3rd-party source codes.
The rationale is described in the issue referenced below.
Issue #1082