When capabilities are delegated to components, they are added to the UTCB of the
target thread. Before the thread is able to take out the capability id out of
the UTCB and adapt the user-level capability reference counter, it might happen
that another thread of the same component deletes the same capability because
its user-level reference counter reached zero. If the kernel then destroys the
capability, before the same capability id is taken out of all UTCBs, an
inconsitent view in the component is the result. To keep an consistent view in
the multi-threading scenario, the kernel now counts how often it puts a
capability into a UTCB. The threads on the other hand hint the kernel when they
took capabilities out of the UTCB, so the kernel can decrement the counter
again. Only when the counter is zero, capabilities can get destructed.
Fix#1623
To ease debugging without the need to tweak the kernel every time, and to
support userland developers with useful information this commit extends several
warnings and errors printed by the kernel/core by which thread/application
caused the problem, and what exactly failed.
Fix#1382Fix#1406
On VEA9X4-TZ, the context-area overlaps with the virtual area of the
text, data and bss. However, we can't simply change the link address as
the core image (used physically respectively 1:1 mapped) needs to be in
this particular RAM-region as it is the only one that can be protected
against a VM. Thus I've moved the context area to a place where it
shouldn't disturb any HW-platform.
Fixes#1337
Kernel::Processor was a confusing remnant from the old scheme where we had a
Processor_driver (now Genode::Cpu) and a Processor (now Kernel::Cpu).
This commit also updates the in-code documentation and the variable and
function naming accordingly.
fix#1274
When a page fault cannot be resolved, the GDB monitor can get a hint about
which thread faulted by evaluating the thread state object returned by
'Cpu_session::state()'. Unfortunately, with the current implementation,
the signal which informs GDB monitor about the page fault is sent before
the thread state object of the faulted thread has been updated, so it
can happen that the faulted thread cannot be determined immediately
after receiving the signal.
With this commit, the thread state gets updated before the signal is sent.
At least on base-nova it can also happen that the thread state is not
accessible yet after receiving the page fault notification. For this
reason, GDB monitor needs to retry its query until the state is
accessible.
Fixes#1206.
On ARM it's relevant to not only distinguish between ordinary cached memory
and write-combined one, but also having non-cached memory too. To insert the
appropriated page table entries e.g.: in the base-hw kernel, we need to preserve
the information about the kind of memory from allocation until the pager
resolves a page fault. Therefore, this commit introduces a new Cache_attribute
type, and replaces the write_combined boolean with the new type where necessary.
This patch changes the top-level directory layout as a preparatory
step for improving the tools for managing 3rd-party source codes.
The rationale is described in the issue referenced below.
Issue #1082