When opening a new file, a new Fs_vfs_handle is created but with the
initial mode set to 0 which is not expected by functions like fdopen()
that check if the original flags given to the open() call match the
returned ones on the used fd.
Fixes#289.
With this patch the 'GNU Project Debugger' (GDB) can be built for Noux.
The included run script connects GDB and GDB monitor via a cross-link
terminal and allows interactive source-level debugging of the GDB monitor
test application on Genode.
Fixes#280.
Some type size tests in the findutils source code expect the 'time_t' type
to be of the same size as the 'long' type, whereas the Genode libc defines
it as '__int64_t' for ARM. This patch disables these tests.
Fixes#262.
Use git to get recent kernels from github. Adjust NOVA patch to compile
with recent github version. Patch and use makefile of NOVA microkernel
to avoid duplicated (and outdated) makefile in Genode
Furthermore, this patch adds support for using NOVA on x86_64. The
generic part of the syscall bindings has been moved to
'base-nova/include/nova/syscall-generic.h'. The 32/64-bit specific
parts are located at 'base-nova/include/32bit/nova/syscalls.h' and
'base-nova/include/64bit/nova/syscalls.h' respectively.
On x86_64, the run environment boots qemu using the Pulsar boot loader
because GRUB legacy does not support booting 64bit ELF executables.
In addition to the NOVA-specific changes in base-nova, this patch
rectifies compile-time warnings or build errors in the 'ports' and
'libports' repositories that are related to NOVA x86_64 (i.e., Vancouver
builds for 32bit only and needed an adaptation to NOVAs changed
bindings)
Fixes#233, fixes#234
In 'Fs_file_system::open()' the call of '_fs.dir()' can throw a
'File_system::Lookup_failed' exception, which gets explicitly caught
with this patch.
Fixes#246.
This patch adds a new "terminal" file system type to Noux, which allows to
create a "character device" file that is connected to a Genode 'Terminal'
service.
The 'Terminal' session created by the file system has the label
"noux(terminal_fs)" to distinguish it from the 'Terminal' session
created by Noux itself.
Fixes#244.
This patch extends the RAM session interface with the ability to
allocate DMA buffers. The client specifies the type of RAM dataspace to
allocate via the new 'cached' argument of the 'Ram_session::alloc()'
function. By default, 'cached' is true, which correponds to the common
case and the original behavior. When setting 'cached' to 'false', core
takes the precautions needed to register the memory as uncached in the
page table of each process that has the dataspace attached.
Currently, the support for allocating DMA buffers is implemented for
Fiasco.OC only. On x86 platforms, it is generally not needed. But on
platforms with more relaxed cache coherence (such as ARM), user-level
device drivers should always use uncacheable memory for DMA transactions.
The sysio's struct fields need to be properly set on each syscall. This
fixes a bug where the wrong fd is used after the first sendto syscall.
Also the minimal buffer size calculation uses the wrong size.
Fixes#235.
Noux/net adds network functionality to noux. Currently most basic
network related system calls including 'accept', 'bind', 'connect',
'listen', 'recv', 'send', 'shutdown', and 'socket' are implemented by
wrapping lwip's network functions.
At the moment noux/net is rarely usable, though it is possible to
use netcat to send a message to a netcat server which listen on a
given port in noux/net.
The new 'genode_envp' variable declared in '_main.cc' allows libc
plugins to supplying custom environment pointers to the main function.
This is needed by 3rd-party software such as GNU make, which expects the
environment pointer as third argument of the main function.
This patch introduces support for stacked file systems alongside new
glue for accessing file-system implementations provided via Genode's
new file-system-session interface.
Using stacked file systems, an arbitrary number of file systems (such
as tar archives or file systems implemented as separate Genode
components) can be composed to form one merged virtual file system.
An example is given via the 'ports/run/noux_bash.run' script. This run
script creates a virtual file system out of multiple tar archives each
containing the content of a particular GNU package. In addition, one
'ram_fs' is mounted, which enables Noux to perform write operations.
This way, the shell output can be redirected to a file, or files can
be saved in VIM.
Fixes#103.
This patch allows to configure the amount of RAM that GDB monitor should
preserve for itself. The configuration syntax looks as follows:
<start name="gdb_monitor">
<resource name="RAM" quantum="1G"/>
<config>
<target name="noux">
<preserve name="RAM" quantum="2M"/>
...
</config>
</start>
Fixes#190.
With this patch clients of the RM service can state if they want a mapping
to be executable or not. This allows dataspaces to be mapped as
non-executable on Linux by default and as executable only if needed.
Partially fixes#176.
With this patch GDB monitor provides a 'config' file to the target. Its
content can be defined in the <config> sub node of the <target> XML node.
Fixes#179.
This patch introduces support for ROM sessions that update their
provided data during the lifetime of the session. The 'Rom_session'
interface had been extended with the new 'release()' and 'sigh()'
functions, which are needed to support the new protocol. All ROM
services have been updated to the new interface.
Furthermore, the patch changes the child policy of init
with regard to the handling of configuration files. The 'Init::Child'
used to always provide the ROM dataspace with the child's config file
via a locally implemented ROM service. However, for dynamic ROM
sessions, we need to establish a session to the real supplier of the ROM
data. This is achieved by using a new 'Child_policy_redirect_rom_file'
policy to handle the 'configfile' rather than handling the 'configfile'
case entirely within 'Child_config'.
To see the new facility in action, the new 'os/run/dynamic_config.run'
script provides a simple scenario. The config file of the test program
is provided by a service, which generates and updates the config data
at regular intervals.
In addition, new support has been added to let slaves use dynamic
reconfiguration. By using the new 'Child_policy_dynamic_rom_file', the
configuration of a slave can be changed dynamically at runtime via the
new 'configure()' function.
The config is provided as plain null-terminated string (instead of a
dataspace capability) because we need to buffer the config data anyway.
So there is no benefit of using a dataspace. For buffering configuration
data, a 'Ram_session' must be supplied. If no 'Ram_session' is specified
at construction time of a 'Slave_policy', no config is supplied to the
slave (which is still a common case).
An example for dynamically reconfiguring a slave is provided by
'os/run/dynamic_config_slave.run'.
The 'copy_to' function turned out to be not flexible enough to
accommodate the Noux fork mechanism. This patch removes the function,
adds an accessor for the capability destination and a compound type
'Native_capability::Raw' to be used wherever plain capability
information must be communicated.