The distinction between 'ipc.h' and 'ipc_generic.h' is no more. The only
use case for platform-specific extensions of the IPC support was the
marshalling of capabilities. However, this case is accommodated by a
function interface ('_marshal_capability', '_unmarshal_capability'). By
moving the implementation of these functions from the headers into the
respective ipc libraries, we can abandon the platform-specific 'ipc.h'
headers.
Add functionality to lookup an object and lock it. Additional the case is
handled that a object may be already in-destruction and the lookup will deny
returning the object.
The object_pool generalize the lookup and lock functionality of the rpc_server
and serve as base for following up patches to fix dangling pointer issues.
This patch reflects eventual allocation errors in a more specific way to
the caller of 'alloc_aligned', in particular out-of-metadata and
out-of-memory are considered as different conditions.
Related to issue #526.
On Linux, we want to attach additional attributes to processes, i.e.,
the chroot location, the designated UID, and GID. Instead of polluting
the generic code with such Linux-specific platform details, I introduced
the new 'Native_pd_args' type, which can be customized for each
platform. The platform-dependent policy of init is factored out in the
new 'pd_args' library.
The new 'base-linux/run/lx_pd_args.run' script can be used to validate
the propagation of those attributes into core.
Note that this patch does not add the interpretation of the new UID and
PID attributes by core. This will be subject of a follow-up patch.
Related to #510.
Using the new 'join()' function, the caller can explicitly block for the
completion of the thread's 'entry()' function. The test case for this
feature can be found at 'os/src/test/thread_join'. For hybrid
Linux/Genode programs, the 'Thread_base::join()' does not map directly
to 'pthread_join'. The latter function gets already called by the
destructor of 'Thread_base'. According to the documentation, subsequent
calls of 'pthread_join' for one thread may result in undefined behaviour.
So we use a 'Genode::Lock' on this platform, which is in line with the
other platforms.
Related to #194, #501
Preparation of base-pistachio fails on Ubuntu with dash as /bin/sh as it
does not support non-POSIX features like brace expansion. In this case
expanding in the Makefile via $(addprefix ...) fixes this shortcoming.
With the update to L4ka::Pistachio, we no longer need to patch the
contrib sources. Our patch went upstream in the meanwhile.
Apparently, gcc-4.7 is picky about specifying the '-melf_i386' argument
at the command line of the GCC frontend. We need to make sure to use the
'-Wl,' prefix.
By now all services in core where created, and registered in the generic
main routine. Although there exists already a x86-specific service (I/O ports)
there was no possibility to announce core-services for certain platforms only.
This commit introduces a hook function in the 'Platform' class, that enables
registration of platform-specific services. Moreover, the io-port service
is offered on x86 platforms only now.
This patch introduces the functions 'affinity' and 'num_cpus' to the CPU
session interface. The interface extension will allow the assignment of
individual threads to CPUs. At this point, it is just a stub with no
actual platform support.
The CML2 configuration system calls 'evn python' and expects version
2.x. So we check if python2 is installed when preparing Pistachio and
use the found version instead.
Fixes#264.
The 'copy_to' function turned out to be not flexible enough to
accommodate the Noux fork mechanism. This patch removes the function,
adds an accessor for the capability destination and a compound type
'Native_capability::Raw' to be used wherever plain capability
information must be communicated.
This commit unifies the policy name for the template argument for
Native_capability_tpl to Cap_dst_policy, like suggested by Norman in the
discussion resulting from issue #145. Moreover, it takes the memcpy
operation for copying a Native_capability out of the template, which is
included by a significant bunch of files, and separates it in a library,
analog to the suggestion in issue #145.
Because we use to pass a policy class to 'Native_capability_tpl'
we can pass the dst type as part of the policy instead of as
a separate template argument. This patch also adds documentation
of the POLICY interface as expected by 'Native_capability_tpl'.
This patch unifies the Native_capability classes for the different kernel
platforms by introducing an appropriate template, and eliminating naming
differences. Please refer issue #145.
To give the platform developer more freedom in how the Native_capability
class is internally implemented (e.g. turning it into a smart-pointer),
this patch removes the memcpy operation, when transfering the parent-capability
to a new process from the generic code, and let the implementation of the
platform-specific Native_capability decide how the transfer has to be done.
Please refer to issue #144.
Introduce a factory-, and dereference method for local capabilities. These are
capabilities that reference objects of services, which are known to be used
protection-domain internally only. To support the new Capability class methods
a protected constructor and accessor to the local object's pointer is needed
in the platform's capability base-classes. For further discussion details please
refer issue #139.
The kernel distinguishes local from global IDs by looking at the lowest
6 bits of the thread ID (i.e., in 'L4_ThreadControl'). If those bits are
zero, the ID is interpreted as a local ID. Because those zero bits
overlap with the version bits of global IDs, this invariant could be
violated once the version of a global ID reaches 64. In this case,
'L4_ThreadControl' will return an error on the attempt to create a new
PD. To prevent this from happening, we always set the lowest bit to 1.