To give the platform developer more freedom in how the Native_capability
class is internally implemented (e.g. turning it into a smart-pointer),
this patch removes the memcpy operation, when transfering the parent-capability
to a new process from the generic code, and let the implementation of the
platform-specific Native_capability decide how the transfer has to be done.
Please refer to issue #144.
Introduce a factory-, and dereference method for local capabilities. These are
capabilities that reference objects of services, which are known to be used
protection-domain internally only. To support the new Capability class methods
a protected constructor and accessor to the local object's pointer is needed
in the platform's capability base-classes. For further discussion details please
refer issue #139.
Separate spin-lock implementation from lock-implementation and put it into a
non-public header, so it can be re-used by the DDE kit's and Fiasco.OC's
capability-allocator spin lock. Fixes issue #123.
Replace 'Reg_array' in 'Genode::Mmio' by 'Register_array' and 'Subreg'
in 'Genode::Register', 'Genode::Mmio::Register'and
'Genode::Mmio::Register_array' by 'Bitfield'.
Update and beautify comments in the according headers and test programs.
'Reg_array' contains items whose width can be the width of the register
storage type at a max. Nethertheless they can be smaller and iterate all
subregs that are covered by the item width. The array uses as much
successive instances of its storage type as needed.
The test 'run/util_mmio' also tests these new features heavily.
The run script 'run/util_mmio.run' runs a test over basic
functionalities of 'Mmio::Register' and 'Mmio::Register::Subreg'. The
test covers the functions 'read' and 'bits', 'set', 'clear' and 'get'.
Inline function in 'Mmio::Register::Subreg' whose definition otherwise
looks ugly.
To accommodate CPU registers, which have a structured layout but don't
depend on a region base address, this patch introduces the generic
'Genode::Register' and 'Genode::Subreg' to 'register.h'.
'Mmio::Register' and 'Mmio::Subreg' inherit from them.
The MMIO access framework consists of an abstraction for a contiguous
MMIO area with a base address set dynamically. Within this class 'Mmio'
are declarations for 'Register' and 'Subreg'. These two can be
parameterized statically via template parameters to create arbitrary
MMIO structures.
Whereas 'Register' relies to a POD like subregion of 'Mmio', 'Subreg'
relies to a MMIO region within a specific 'Register' and therefore is
smaller or equal then the storage type of its superior 'Register'.
Furthermore with 'Reg_array' and 'Subreg_array', there exists the
possibility to handle arrays of uniform contiguous registers or subregs
by index. 'Subreg_array' therefore abstracts from the width boundary of
its superior 'Register' and handles a steady distance between its
members in addition. Both also check array size limits.
Related to issue #69.
The startup procedure of forked processes differs from Genode's
normal process creation by omitting all steps related to ELF loading
and the start of the main thread. To let the process lib support this
distinction, an invalid ELF-binary capability is handled as valid
argument now.
The 'Child' framework used to perform the transfer of session quota
using 'env()->ram_session()' as hard-wired reference account. When
locally virtualizing the RAM session supplied to the 'Child', this
policy does not work. When closing a session, core would try to transfer
session quota to the virtualized RAM service, which is of course not
possible. This patch makes the reference RAM session configable via the
'Child_policy' interface.
The new function 'Platform_env::reload_parent_cap' triggers a reload
of the parent capability and its respective resources. It is needed
during the bootstrap of a new process forked from an existing Noux
process.
This patch fixes printf errors caused by sign extension of values that
were supposed to be unsigned. Fixes#6. Also handles the case where
sizeof(long long) != sizeof(long).
Until now, the RPC framework did not support const RPC functions. Rather
than being a limitation inherent to the concept, const RPC functions
plainly did not exist. So supporting them was not deemed too important.
However, there are uses of RPC interfaces that would benefit from a way
to declare an RPC function as const. Candidates are functions like
'Framebuffer::Session::mode()' and 'Input::Session::is_pending()'.
This patch clears the way towards declaring such functions as const.
Even though the patch is simple enough, the thorough support for
const-qualified RPC functions would double the number of overloads for
the 'call_member' function template (in 'base/include/util/meta.h'). For
this reason, the patch does support const getter functions with no
arguments only. This appears to be the most common use of such
functions.
This patch implements the support needed to handle exceptions that occur
during the construction of objects dynamically allocated via the
'Allocator' interface. In this case, the compiler automatically invokes
a special delete operator that takes the allocator type (as supplied to
'new') as second argument. The implementation of this delete operator
has been added to the 'cxx' library. Because the operator delete is
called without the size of the object, we can use only those allocators
that ignore the size argument of the free function and print a warning
otherwise. The added 'Allocator::need_size_for_free()' function is used
to distinguish safe and unsafe allocators.
Normally, the build system creates libraries as mere side effects of
building targets. There is no way to explicitly trigger the build of
libraries only. However, in some circumstances (for example for testing
the thorough build of all libraries) a mechanism for explicitly building
libraries would be convenient. This patch implements this feature. It
consists of two changes.
The new pseudo target at 'base/src/lib/target.mk' gathers all libraries
that are available in all repositories specified for the build directory
and makes its target depend on them. This way, by building 'lib', all
libraries would be traversed. However, in the (likely) situation that
those libraries include one or more invalid libraries (libraries with
unsatisfied build requirements), the build system would skip the target.
Hence, the second change introduces a new condition 'FORCE_BUILD_LIBS'
to the build system. By setting this variable to 'yes' in the 'target.mk'
file, we let the build system to traverse library dependencies for
all valid libraries regardless of the presence of any invalid library.
When using an ELF image as returned from the iso9660 server, such an
image is represented as a managed dataspace composed of various portions
of one RAM dataspace, each portion attached with a different offset.
Now, when mapping the text segment of the ELF image (usually starting at
0x1000 within the image), the code mapped at 0x1000 may correspond to
any offset within the RAM dataspace used by the iso9660 server. In
particular, the src-fault address (the one within the RAM dataspace) may
be higher than dst-fault address (somewhere just above 0x1000 where a
page-fault occurred). Thereby, 'curr_rm_base' may become negative
during the reverse lookup of 'Rm_client::pager'. This corner case used
to let the 'Fault_area::constrain' function return an invalid fault
area, and thereby let the reverse lookup fail. The improved version
explicitly checks for the address overflow condition and tries to
constrain the dst fault address to the largest possible log2 page within
the positive address range.
Properly account signal count in the explicit-reply path (when source-
client gets immediately unblocked by 'signal_session_component::submit').
This patch prevents the delivery of superfluous signals with num == 0.
- Let hybrid Linux/Genode programs use POSIX threads for the
implementation of the Thread API.
- Prevent linkage of cxx library to hybrid Linux/Genode programs because
the cxx functionality is covered by glibc.