To prevent multiple execution of main-bootstrap, I moved the code to a
statically initialized object. The reason for this change is that
_main() is exeuted twice when starting dynamic binaries. Now, the object
is part of the base-common library which is linked with ld.lib.so.
Currently, on the Arndale platform, core uses a different thread context
area base address than the other tasks (0x20000000 vs. 0x40000000). This
is problematic, because core calculates the location of the UTCB area of a
new thread relatively to core's own thread context area base. So, the UTCB
area of non-core threads ends up in a virtual address range which is
outside of the task's thread context area and not marked as used in the
task's RM session.
With this patch, the same thread context area base address gets used in
core and in the other tasks.
Fixes#779.
Make 'context_area_virtual_base' platform configurable. On Arndale, we
need to move the context area to a location that does not interfere with
the address range of physical memory.
This patch simplifies the way of how Genode's base libraries are
organized. Originally, the base API was implemented in the form of many
small libraries such as 'thread', 'env', 'server', etc. Most of them
used to consist of only a small number of files. Because those libraries
are incorporated in any build, the checking of their inter-dependencies
made the build process more verbose than desired. Also, the number of
libraries and their roles (core only, non-core only, shared by both core
and non-core) were not easy to capture.
Hereby, the base libraries have been reduced to the following few
libraries:
- startup.mk contains the startup code for normal Genode processes.
On some platform, core is able to use the library as well.
- base-common.mk contains the parts of the base library that are
identical by core and non-core processes.
- base.mk contains the complete base API implementation for non-core
processes
Consequently, the 'LIBS' declaration in 'target.mk' files becomes
simpler as well. In the most simple case, only the 'base' library must
be mentioned.
Fixes#18
This commit fixes several issues that were triggered e.g. by the
'noux_tool_chain' run-script (fix#208 in part). The following problems
are tackled:
* Don't reference count capability selectors within a task that are actually
controlled by core (all beneath 0x200000), because it's undecideable which
"version" of a capability selector we currently use, e.g. a thread gets
destroyed and a new one gets created immediately some other thread might
have a Native_capability pointing to the already destroyed thread's gate
capability-slot, that is now a new valid one (the one of the new thread)
* In core we cannot invalidate and remove a capability from the so called
Cap_map before each reference to it is destroyed, so don't do this in
Cap_session_component::free, but only reference-decrement within there,
the actual removal can only be done in Cap_map::remove. Because core also
has to invalidate a capability to be removed in all protection-domains
we have to implement a core specific Cap_map::remove method
* When a capability gets inserted into the Cap_map, and we detect an old
invalid entry with the dame id in the tree, don't just overmap that
invalid entry (as there exist remaining references to it), but just remove
it from the tree and allocate an new entry.
* Use the Cap_session_component interface to free a Pager_object when it
gets dissolved, as its also used for allocation
This commit introduces a Cap_index class for Fiasco.OC's capabilities.
A Cap_index is a combination of the global capability id, that is used by Genode
to correctly identify a kernel-object, and a corresponding entry in a
protection-domain's (kernel-)capability-space. The cap-indices are non-copyable,
unique objects, that are held in a Cap_map. The Cap_map is used to re-find
capabilities already present in the protection-domain, when a capability is
received via IPC. The retrieval of capabilities effectively fixes issue #112,
meaning the waste of capability-space entries.
Because Cap_index objects are non-copyable (their address indicates the position
in the capability-space of the pd), they are inappropriate to use as
Native_capability. Therefore, Native_capability is implemented as a reference
to Cap_index objects. This design seems to be a good pre-condition to implement
smart-pointers for entries in the capability-space, and thereby closing existing
leaks (please refer to issue #32).
Cap_index, Cap_map, and the allocator for Cap_index objects are designed in a way,
that it should be relatively easy to apply the same concept to NOVA also. By now,
these classes are located in the `base-foc` repository, but they intentionally
contain no Fiasco.OC specific elements.
The previously explained changes had extensive impact on the whole Fiasco.OC
platform implementation, due to various dependencies. The following things had to
be changed:
* The Thread object's startup and destruction routine is re-arranged, to
enable another thread (that calls the Thread destructor) gaining the
capability id of the thread's gate to remove it from the Cap_map, the
thread's UTCB had to be made available to the caller, because there
is the current location of that id. After having the UTCB available
in the Thread object for that reason, the whole thread bootstrapping
could be simplified.
* In the course of changing the Native_capability's semantic, a new Cap_mapping
class was introduced in core, that facilitates the establishment and
destruction of capability mappings between core and it's client's, especially
mappings related to Platform_thread and Platform_task, that are relevant to
task and thread creation and destruction. Thereby, the destruction of
threads had to be reworked, which effectively removed a bug (issue #149)
where some threads weren't destroyed properly.
* In the quick fix for issue #112, something similar to the Cap_map was
introduced available in all processes. Moreover, some kind of a capability
map already existed in core, to handle cap-session request properly. The
introduction of the Cap_map unified both structures, so that the
cap-session component code in core had to be reworked too.
* The platform initialization code had to be changed sligthly due to the
changes in Native_capability
* The vcpu initialization in the L4Linux support library had to be adapted
according to the already mentioned changes in the Thread object's bootstrap
code.
This commit unifies the policy name for the template argument for
Native_capability_tpl to Cap_dst_policy, like suggested by Norman in the
discussion resulting from issue #145. Moreover, it takes the memcpy
operation for copying a Native_capability out of the template, which is
included by a significant bunch of files, and separates it in a library,
analog to the suggestion in issue #145.
Separate spin-lock implementation from lock-implementation and put it into a
non-public header, so it can be re-used by the DDE kit's and Fiasco.OC's
capability-allocator spin lock. Fixes issue #123.
The new function 'Platform_env::reload_parent_cap' triggers a reload
of the parent capability and its respective resources. It is needed
during the bootstrap of a new process forked from an existing Noux
process.