Open a capability receive window according to the number of the capabilities
expected as out parameter per RPC function.
Typically the number of capabilities expected during the reply of a RPC/IPC
call is 0 to 1. Before this patch ever a capability receive window of 4 has
been opened.
On Nova the capability selectors of receive windows must be naturally aligned
to the size/order of the expected capabilities. This leads until now to the
issue that the left over 3 capabilities couldn't be reused for new IPCs since
they are not naturally aligned to 4.
Issue #905
If a local thread is attempted to be 'pause'd via cpu_session, don't wait
until it gets into the recalled state. If the caller is lucky it is, if not
return only the stack pointer.
Avoids deadlocking of the gdb when attached to a process running a server.
Issue #478
The 'pause' call on base-nova assumes that a thread can solely block in its
associated semaphore. Main reason is that so core can unblock a thread in order
that the recall exception gets delivered and the register state can be
obtained.
Unfortunately the signal session implementation creates a semaphore, which is
unknown by the pager code. Instead create the semaphore via the pager of the
thread, so that the pager can unblock the signal thread when a pause is issued.
Issue #478
If a thread caused a page fault and later on get be paused, then it left
the recall handler immediately due to the pause call instead of staying
in this handler.
Add some (complicated) state machine to detect and handle the case. Still not
waterproof, especially server threads may never get recalled if they never get
a IPC from the outside.
Fixes#478
This patch introduces new types for expressing CPU affinities. Instead
of dealing with physical CPU numbers, affinities are expressed as
rectangles in a grid of virtual CPU nodes. This clears the way to
conveniently assign sets of adjacent CPUs to subsystems, each of them
managing their respective viewport of the coordinate space.
By using 2D Cartesian coordinates, the locality of CPU nodes can be
modeled for different topologies such as SMP (simple Nx1 grid), grids of
NUMA nodes, or ring topologies.
The distinction between 'ipc.h' and 'ipc_generic.h' is no more. The only
use case for platform-specific extensions of the IPC support was the
marshalling of capabilities. However, this case is accommodated by a
function interface ('_marshal_capability', '_unmarshal_capability'). By
moving the implementation of these functions from the headers into the
respective ipc libraries, we can abandon the platform-specific 'ipc.h'
headers.
The cleanup call must be performed already during the _dissolve function
shortly after the object at the cap_session is freed up. Otherwise there
is the chance that an in-flight IPC will find the to be dissolved function
again.
Bomb test triggered the case, that a already dissolved rpc_object was found
by a in-flight IPC. If the rpc_object was already freed up by alloc->destroy
the thread using this stale rpc_object pointer cause page-faults in core.
Fixes partly #549
If we ran out of capabilities indexes, the bit allocator throws an exception.
If this happens the code seems to hang and nothing happens.
Instead one could catch the exception and print some diagnostic message.
This would be nice, but don't work. Printing some diagnostic message itself
tries to do potentially IPC and will allocate new capability indexes at
least for the receive window.
So, catch the exception and let the thread die, so at least the instruction
pointer is left as trace to identify the reason of the trouble.
Fixes#625
On Linux, we want to attach additional attributes to processes, i.e.,
the chroot location, the designated UID, and GID. Instead of polluting
the generic code with such Linux-specific platform details, I introduced
the new 'Native_pd_args' type, which can be customized for each
platform. The platform-dependent policy of init is factored out in the
new 'pd_args' library.
The new 'base-linux/run/lx_pd_args.run' script can be used to validate
the propagation of those attributes into core.
Note that this patch does not add the interpretation of the new UID and
PID attributes by core. This will be subject of a follow-up patch.
Related to #510.
Extend tracking of delegated and of translated items. The additional
information is used to solely free up unused/unwanted mapped capabilities and
to avoid unnecessary revokes on capability indexes where nothing have been
received.
Fixes#430
Move the context area close to the end of the virtual user available address,
so that Vancouver can obtain as much as possible of the lower virtual address
range for VMs.
The cpu_session interface fails to be virtualized by gdb_monitor because
platform-nova uses an extended nova_cpu_session interface.
The problem was that threads have been created directly at core without
knowledge of gdb_monitor. This lead to the situation that gdb_monitor didn't
know of all threads to be debugged.
Tunnel the additional parameters required on base-nova through the state()
call of the cpu_session interface before the thread actual is started.
Extend Native_capability type to hold a specific selector index where the to
be received cap during a IPC should be mapped to. This feature is required to
place created caps by the cap_session at specific indexes. This feature is
used by Vancouver to setup the virtualization exception portals (created by
the cap_session) at the intended indexes.
Patch prevents following bugs:
* In sleep_forever the thread return from semaphore down if cap is revoked
during destruction of a thread. This causes an endless loop consuming time
not available for other threads.
* In lock_helper and cap_sel_alloc the thread return from the lock() method
even if the semaphore down call failed because of an revoked semaphore.
This lead to the situation that a thread subject to de-construction returns
from the lock method, but not holding the lock, entering the critical section
and modifying state inside the critical section. Another thread in parallel
already in the critical section or entering the critical section also
modifies the state. This lead to curious bugs ...
* thread_nova, thread_start, irq_session
Detect early bugs if the SM is gone unexpectedly where it should never
happen.
It now can hold a right bit used during IPC to demote rights of the to be
transfered capability.
The local_name field in the native_capability type is not needed anymore
in NOVA. Simplify the class, remove it from constructors and adapt all
invocations in base-nova.
Unfortunately local_name in struct Raw is still used in generic base code
(process.cc, reload_parent_cap.cc), however has no effect in base-nova.
MsgBuf has to keep the number of received capabilities in order
to free/know correctly unused and unwanted capabilities. Explicitly
call rcv_msg->post_ipc to store this information in a MsgBuf.
Don't reset rcv_msg in ipc.cc, since this is used during
un-marshalling of caps in ipc.h afterwards. The MsgBuf is reseted when its
de-constructor is called.
With this patch solely the local ids are used, no global unique ids
are transfered anymore during IPC.
demo.run, signal.run, noux_tool_chain.run works up to the same
point as before the patches for issue #268.
Fixes#268
Kernel patch:
Introduce a transfer item type to express that a cap should be translated
and if this fails to map it instead.
It would be possible without this combined transfer item type however
with additional overhead. In this case Genode/NOVA would
have to map and translate all caps used as parameter in IPC. It would look
like this:
* If the map and translation succeed, the cap at the new cap index
would have to be revoked. Then the translated cap index can be used.
* If the map succeeds and the translation fails then the mapped cap index
can be used.
* It would become complicated when multiple caps are mapped and translated
and only some of the translation succeed. In such cases Genode would have
to figure out the right relation of translated/mapped and not
translated/mapped caps. It would require to make some assumption about the
order how translated/mapped caps are reported at the UTCB by the kernel.
All the points above lead to the decision to create a separate transfer item
type for that.
Genode:
Most the times the translation succeeds, mapping of caps happens either
seldom. This takes now a bit the pressure of not enough aligned receive
cap windows as described in issue #247.
The patch mainly adds adjustments to handle the
translated and mapped caps correctly especially during freeing of the
receive window (don't free translated cap indexes).
Fixes#268
Allocate exc_pt_sel inside Thread_base object
instead of pager object, since it is a thread
specific characteristic.
Same for freeing of the thread capabilities:
- ec, sc, rs, exc_pt_sel is thread specific
and has nothing to do in server nor pager object.
The invalid thread is specified as 0,0,-1 (ec cap, sc cap, sem cap).
The main thread is specified as 0,0,0.
The comparator identified "tid_main == tid_invalid" as equal,
which is obviously wrong.
The patch compares at least ec and sem cap.