This patch mirrors the accounting and trading scheme that Genode employs
for physical memory to the accounting of capability allocations.
Capability quotas must now be explicitly assigned to subsystems by
specifying a 'caps=<amount>' attribute to init's start nodes.
Analogously to RAM quotas, cap quotas can be traded between clients and
servers as part of the session protocol. The capability budget of each
component is maintained by the component's corresponding PD session at
core.
At the current stage, the accounting is applied to RPC capabilities,
signal-context capabilities, and dataspace capabilities. Capabilities
that are dynamically allocated via core's CPU and TRACE service are not
yet covered. Also, the capabilities allocated by resource multiplexers
outside of core (like nitpicker) must be accounted by the respective
servers, which is not covered yet.
If a component runs out of capabilities, core's PD service prints a
warning to the log. To observe the consumption of capabilities per
component in detail, the PD service is equipped with a diagnostic
mode, which can be enabled via the 'diag' attribute in the target
node of init's routing rules. E.g., the following route enables the
diagnostic mode for the PD session of the "timer" component:
<default-route>
<service name="PD" unscoped_label="timer">
<parent diag="yes"/>
</service>
...
</default-route>
For subsystems based on a sub-init instance, init can be configured
to report the capability-quota information of its subsystems by
adding the attribute 'child_caps="yes"' to init's '<report>'
config node. Init's own capability quota can be reported by adding
the attribute 'init_caps="yes"'.
Fixes#2398
This patch reworks the implementation of core's RAM service to make use
of the 'Session_object' and to remove the distinction between the
"metadata" quota and the managed RAM quota. With the new implementation,
the session implicitly allocates its metadata from its own account. So
there is not need to handle 'Out_of_metadata' and 'Quota_exceeded' via
different exceptions. Instead, the new version solely uses the
'Out_of_ram' exception.
Furthermore, the 'Allocator::Out_of_memory' exception has become an alias
for 'Out_of_ram', which simplifies the error handling.
Issue #2398
This patch replaces the 'Parent::Quota_exceeded',
'Service::Quota_exceeded', and 'Root::Quota_exceeded' exceptions
by the single 'Insufficient_ram_quota' exception type.
Furthermore, the 'Parent' interface distinguished now between
'Out_of_ram' (the child's RAM is exhausted) from
'Insufficient_ram_quota' (the child's RAM donation does not suffice to
establish the session).
This eliminates ambiguities and removes the need to convert exception
types along the path of the session creation.
Issue #2398
This patch adds sanity checks to the RPC entrypoint that detect attempts
to manage or dissolve the same RPC object twice. This is not always a
bug. I.e., if RPC objects are implemented in the modern way where the
object manages/dissolves itself. As the generic framework code (in
particular root/component.h) cannot rely on this pattern, it has to
call manage/dissolve for session objects anyway. For modern session
objects, this double attempt would result in a serious error (double
insertion into the object pool's AVL tree).
Issue #2398
This patch replaces the former use of size_t with the use of the
'Ram_quota' type to improve type safety (in particular to avoid
accidentally mixing up RAM quotas with cap quotas).
Issue #2398
This patch ensures that the POLICY::release is called whenever the
session creation aborted with an exception. In the original version, an
exception like 'Quota_exceeded' caused a single-session root interface
to deny subsequent session requests.
This patch improves the accounting for the backing store of
session-state meta data. Originally, the session state used to be
allocated by a child-local heap partition fed from the child's RAM
session. However, whereas this approach was somehow practical from a
runtime's (parent's) point of view, the child component could not count
on the quota in its own RAM session. I.e., if the Child::heap grew at
the parent side, the child's RAM session would magically diminish. This
caused two problems. First, it violates assumptions of components like
init that carefully manage their RAM resources (and giving most of them
away their children). Second, if a child transfers most of its RAM
session quota to another RAM session (like init does), the child's RAM
session may actually not allow the parent's heap to grow, which is a
very difficult error condition to deal with.
In the new version, there is no Child::heap anymore. Instead, session
states are allocated from the runtime's RAM session. In order to let
children pay for these costs, the parent withdraws the local session
costs from the session quota donated from the child when the child
initiates a new session. Hence, in principle, all components on the
route of the session request take a small bite from the session quota to
pay for their local book keeping
Consequently, the session quota that ends up at the server may become
depleted more or less, depending on the route. In the case where the
remaining quota is insufficient for the server, the server responds with
'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this
patch equips the client-side 'Env::session' implementation with the
ability to re-issue session requests with successively growing quota
donations.
For several of core's services (ROM, IO_MEM, IRQ), the default session
quota has now increased by 2 KiB, which should suffice for session
requests to up to 3 hops as is the common case for most run scripts. For
longer routes, the retry mechanism as described above comes into effect.
For the time being, we give a warning whenever the server-side quota
check triggers the retry mechanism. The warning may eventually be
removed at a later stage.
This is a redesign of the root and parent interfaces to eliminate
blocking RPC calls.
- New session representation at the parent (base/session_state.h)
- base-internal root proxy mechanism as migration path
- Redesign of base/service.h
- Removes ancient 'Connection::KEEP_OPEN' feature
- Interface change of 'Child', 'Child_policy', 'Slave', 'Slave_policy'
- New 'Slave::Connection'
- Changed child-construction procedure to be compatible with the
non-blocking parent interface and to be easier to use
- The child's initial LOG session, its binary ROM session, and the
linker ROM session have become part of the child's envirenment.
- Session upgrading must now be performed via 'env.upgrade' instead
of performing a sole RPC call the parent. To make RAM upgrades
easier, the 'Connection' provides a new 'upgrade_ram' method.
Issue #2120
Besides adapting the components to the use of base/log.h, the patch
cleans up a few base headers, i.e., it removes unused includes from
root/component.h, specifically base/heap.h and
ram_session/ram_session.h. Hence, components that relied on the implicit
inclusion of those headers have to manually include those headers now.
While adjusting the log messages, I repeatedly stumbled over the problem
that printing char * arguments is ambiguous. It is unclear whether to
print the argument as pointer or null-terminated string. To overcome
this problem, the patch introduces a new type 'Cstring' that allows the
caller to express that the argument should be handled as null-terminated
string. As a nice side effect, with this type in place, the optional len
argument of the 'String' class could be removed. Instead of supplying a
pair of (char const *, size_t), the constructor accepts a 'Cstring'.
This, in turn, clears the way let the 'String' constructor use the new
output mechanism to assemble a string from multiple arguments (and
thereby getting rid of snprintf within Genode in the near future).
To enforce the explicit resolution of the char * ambiguity, the 'char *'
overload of the 'print' function is marked as deleted.
Issue #1987
Quota_exceeded message are of no use during session construction, since
the arguments of the ram_quota are used and no upgrade can take place (the
session construction failed and is so not available for upgrade)
Fixes#1983
Instead of returning pointers to locked objects via a lookup function,
the new object pool implementation restricts object access to
functors resp. lambda expressions that are applied to the objects
within the pool itself.
Fix#884Fix#1658
There are lots of places where a numeric argument of an argument string
gets extraced as signed long value and then assigned to an unsigned long
variable. If the value in the string was negative, it would not be
detected as invalid (and replaced by the default value), but become a
positive bogus value.
With this patch, numeric values which are supposed to be unsigned get
extracted with the 'ulong_value()' function, which returns the default
value for negative numbers.
Fixes#1472
This patch changes the top-level directory layout as a preparatory
step for improving the tools for managing 3rd-party source codes.
The rationale is described in the issue referenced below.
Issue #1082