This patch integrates three region maps into each PD session to
reduce the session overhead and to simplify the PD creation procedure.
Please refer to the issue cited below for an elaborative discussion.
Note the API change:
With this patch, the semantics of core's RM service have changed. Now,
the service is merely a tool for creating and destroying managed
dataspaces, which are rarely needed. Regular components no longer need a
RM session. For this reason, the corresponding argument for the
'Process' and 'Child' constructors has been removed.
The former interface of the 'Rm_session' is not named 'Region_map'. As a
minor refinement, the 'Fault_type' enum values are now part of the
'Region_map::State' struct.
Issue #1938
Besides unifying the Msgbuf_base classes across all platforms, this
patch merges the Ipc_marshaller functionality into Msgbuf_base, which
leads to several further simplifications. For example, this patch
eventually moves the Native_connection_state and removes all state
from the former Ipc_server to the actual server loop, which not only
makes the flow of control and information much more obvious, but is
also more flexible. I.e., on NOVA, we don't even have the notion of
reply-and-wait. Now, we are no longer forced to pretend otherwise.
Issue #1832
This commit replaces the stateful 'Ipc_client' type with the plain
function 'ipc_call' that takes all the needed state as arguments.
The stateful 'Ipc_server' class is retained but it moved from the public
API to the internal ipc_server.h header. The kernel-specific
implementations were cleaned up and simplified. E.g., the 'wait'
function does no longer exist. The badge and exception code are no
longer carried in the message buffers but are handled in kernel-specific
ways.
Issue #610
Issue #1832
This patch moves details about the stack allocation and organization
the base-internal headers. Thereby, I replaced the notion of "thread
contexts" by "stacks" as this term is much more intuitive. The fact that
we place thread-specific information at the bottom of the stack is not
worth introducing new terminology.
Issue #1832
This patch integrates the functionality of the former CAP session into
the PD session and unifies the approch of supplementing the generic PD
session with kernel-specific functionality. The latter is achieved by
the new 'Native_pd' interface. The kernel-specific interface can be
obtained via the Pd_session::native_pd accessor function. The
kernel-specific interfaces are named Nova_native_pd, Foc_native_pd, and
Linux_native_pd.
The latter change allowed for to deduplication of the
pd_session_component code among the various base platforms.
To retain API compatibility, we keep the 'Cap_session' and
'Cap_connection' around. But those classes have become mere wrappers
around the PD session interface.
Issue #1841
This patch removes the SIGNAL service from core and moves its
functionality to the PD session. Furthermore, it unifies the PD service
implementation and terminology across the various base platforms.
Issue #1841
This commit adds rocket core on the Zynq FPGA support to base HW. It also takes
advantage of the new timer infrastructure introduced with the privileged 1.8 and
adds improved TLB flush support.
fixes#1880
The main thread's UTCB, used during bootstrap of the main thread before
it allocates its context area, needs to be outside the virtual memory
area controlled by the RM session, because it is needed before the main
thread can access its RM session.
Fix#1804
When capabilities are delegated to components, they are added to the UTCB of the
target thread. Before the thread is able to take out the capability id out of
the UTCB and adapt the user-level capability reference counter, it might happen
that another thread of the same component deletes the same capability because
its user-level reference counter reached zero. If the kernel then destroys the
capability, before the same capability id is taken out of all UTCBs, an
inconsitent view in the component is the result. To keep an consistent view in
the multi-threading scenario, the kernel now counts how often it puts a
capability into a UTCB. The threads on the other hand hint the kernel when they
took capabilities out of the UTCB, so the kernel can decrement the counter
again. Only when the counter is zero, capabilities can get destructed.
Fix#1623
Enhance the VM state, that can be accessed by a VMM, by a member
'unsigned irq_injection'. In Kernel::Vm::proceed check, whether
irq_injection is set. If so, check whether irq_injection is a
non-secure IRQ. If so, let the PIC raise this IRQ in the VM and reset
irq_injection.
Ref #1497
'block_for_signal' and 'pending_signal' now set pending flag in signal context
in order to determine pending signal. The context list is also used by the
'Signal_receiver' during destruction.
Fixes#1738
Instead of holding SPEC-variable dependent files and directories inline
within the repository structure, move them into 'spec' subdirectories
at the corresponding levels, e.g.:
repos/base/include/spec
repos/base/mk/spec
repos/base/lib/mk/spec
repos/base/src/core/spec
...
Moreover, this commit removes the 'platform' directories. That term was
used in an overloaded sense. All SPEC-relative 'platform' directories are
now named 'spec'. Other files, like for instance those related to the
kernel/architecture specific startup library, where moved from 'platform'
directories to explicit, more meaningful places like e.g.: 'src/lib/startup'.
Fix#1673
This patch contains the initial code needed to build and bootstrap the
base-hw kernel on x86 64-bit platforms. It gets stuck earlier
because the binary contains 64-bit instructions, but it is started in
32-bit mode. The initial setup of page tables and switch to long mode is
still missing from the crt0 code.
To ease debugging without the need to tweak the kernel every time, and to
support userland developers with useful information this commit extends several
warnings and errors printed by the kernel/core by which thread/application
caused the problem, and what exactly failed.
Fix#1382Fix#1406
For the USB-Armory, we use a newer version of Linux (3.18) as for the
i.MX53-QSB. The main difference is, that the newer Linux uses a DTB instead of
ATAGs.
Fixes#1422
* enables world-switch using ARM virtualization extensions
* split TrustZone and virtualization extensions hardly from platforms,
where it is not used
* extend 'Vm_session' interface to enable configuration of guest-physical memory
* introduce VM destruction syscall
* add virtual machine monitor for hw_arndale that emulates a simplified version
of ARM's Versatile Express Cortex A15 board for a Linux guest OS
Fixes#1405
When building Genode for VEA9X4 as micro-hypervisor protected by the ARM
TrustZone hardware we ran into limitations regarding our basic daily
testing routines. The most significant is that, when speaking about RAM
partitioning, the only available options are to configure the whole SRAM
to be secure and the whole DDR-RAM to be non-secure or vice versa. The
SRAM however provides only 32 MB which isn't enough for both a
representative non-secure guest OS or a secure Genode that is still
capable of passing our basic tests. This initiated our decision to
remove the VEA9X4 TrustZone-support.
Fixes#1351
On VEA9X4-TZ, the context-area overlaps with the virtual area of the
text, data and bss. However, we can't simply change the link address as
the core image (used physically respectively 1:1 mapped) needs to be in
this particular RAM-region as it is the only one that can be protected
against a VM. Thus I've moved the context area to a place where it
shouldn't disturb any HW-platform.
Fixes#1337
On the Versatile Express Cortex A9x4 platform the first memory region
0x0 - 0x4000000 is a hardware remapped memory area, containing flash
and DDR RAM copies and thus should not be added in addition to all
DDR RAM regions and the SRAM region.
Kernel::Processor was a confusing remnant from the old scheme where we had a
Processor_driver (now Genode::Cpu) and a Processor (now Kernel::Cpu).
This commit also updates the in-code documentation and the variable and
function naming accordingly.
fix#1274
When a page fault cannot be resolved, the GDB monitor can get a hint about
which thread faulted by evaluating the thread state object returned by
'Cpu_session::state()'. Unfortunately, with the current implementation,
the signal which informs GDB monitor about the page fault is sent before
the thread state object of the faulted thread has been updated, so it
can happen that the faulted thread cannot be determined immediately
after receiving the signal.
With this commit, the thread state gets updated before the signal is sent.
At least on base-nova it can also happen that the thread state is not
accessible yet after receiving the page fault notification. For this
reason, GDB monitor needs to retry its query until the state is
accessible.
Fixes#1206.
On ARM it's relevant to not only distinguish between ordinary cached memory
and write-combined one, but also having non-cached memory too. To insert the
appropriated page table entries e.g.: in the base-hw kernel, we need to preserve
the information about the kind of memory from allocation until the pager
resolves a page fault. Therefore, this commit introduces a new Cache_attribute
type, and replaces the write_combined boolean with the new type where necessary.
This patch changes the top-level directory layout as a preparatory
step for improving the tools for managing 3rd-party source codes.
The rationale is described in the issue referenced below.
Issue #1082