r3 contains the recent Nova upstream kernel version plus the Genode specific
extensions and changes as known from r2.
Additionally, the r3 branch
* contains the assign_pci patch now directly,
* adds support for cross CPU IPC,
* fixes some issues with freeing up kernel memory part of r2 and
* update the documentation a bit.
Fixes#814
Since we have now more than a handful patches to the vanilla kernel, we
better switch to a separate git repository in order to review and to maintain
the patches more effectively.
Remove the patches, they are already in the kernel branch.
Fixes#394
Unify handling of UTCBs. The utcb of the main thread is with commit
ea38aad30e6166a0da1ac8bd84b53d6e1962cfaf at a fixed location - per convention.
So we can remove all the ugly code to transfer the utcb address during process
creation.
To do so also the UTCB of the main thread of Core must be inside Genode's
thread context area to handle it the same way. Unfortunately the UTCB of the
main thread of Core can't be chosen, it is defined by the kernel.
Possible solutions:
- make virtual address of first thread UTCB configurable in hypervisor
- map the utcb of the first thread inside Core to the desired location
This commit implements the second option.
Kernel patch: make utcb map-able
With the patch the Utcb of the main thread of Core is map-able.
Fixes#374
Noux actually uses the sp variable during thread creation and expects to be
set accordingly. This wasn't the case for the main thread, it was ever set
to the address of the main thread UTCB.
Unfortunately, another kernel patch is required for Genode/NOVA to get rid
of global unique ids for objects (issue #268).
Kernel patch:
If a translate of a object capability item inside the same PD
(receiver/sender in same PD) is not successful then he very same item is
returned instead of the null item.
Genode:
Some code in Genode try to map/translate the "root" (the first instance of a)
object capability within the same PD. The translate fails since it is the
first cap and was not delegated beforehand. Instead the cap gets mapped to a
new capability index due to xlt_rcv kernel item patch.
The new local object capability index is used to lookup manged objects
in lists, which however fails because the object is only known by the original
object capability index.
Unfortunately, this happens not only once. Below one example trace and
description is attached.
There are several possible solutions possible:
* Find all places in Genode and replace normal function calls between objects
with IPC calls, such that all capabilities can be translated during IPC.
** Time consuming to find all spots
** Rather platform specific issue requires re-adjustments in generic Genode
code
** Not trivial to ever remember this fact during development of new components
[other platforms have not such a issue, however have global object ids]
** Neither good in terms of performance.
* Use some special system call to the kernel to be able to translate a given
capability index as long until you find the requested original index.
(Obviously ... no comment).
* Kernel patch as this one.
* <your proposal>
Example trace + code description showing the behavior above:
int main(): --- create local services ---
int main(): --- start init ---
[0] DEL OBJ PD:0xc000aa80->0xc000aa80 SB:0x000000aa RB:0x000000ac O:0x00 A:0x1f
int main(): transferred 42 MB to init
[0] DEL OBJ PD:0xc000aa80->0xc000aa80 SB:0x00000120 RB:0x0000013c O:0x00 A:0x1f
[0] DEL OBJ PD:0xc000aa80->0xc000aa80 SB:0x0000016c RB:0x00000168 O:0x00 A:0x1f
Setup ELF failed
[0] XLT OBJ PD:0xc000aa80->0xc000aa80 SB:0x00000168 RB:0x0000016c O:0x00
unknown exception?
int main(): --- init created, waiting for exit condition ---
thread - file - line - text
-------------------------------------------------------------------------------
thread A - [ 0] - 228 - new Core_child(... rom_session.dataspace() ...)
thread A - [ 1] - 27 - IPC call - ask for dataspace cap
thread B - [ 2] - 49 - function - return dataspace cap index 0x120
thread A - [ 1] - 27 - IPC returned - map 0x120 -> 0x13c, translate failed
thread A - ...
thread A - [ 3] - 231 - call _setup_elf()
thread A - [ 3] - 60 - call env->rm_session()->attach()
thread A - [ 4] - 35 - do dataspace object lookup (0x13c)
thread A - [ 4] - 36 - lookup failed (object known as 0x120), throw Exception
thread A - [ 3] - 61 - catch Exception -> return error code "0"
thread A - [ 3] - 233 - "Setup ELF failed" - because error code "0"
File legend:
[0] base/src/core/main.cc
[1] base/include/rom_session/client.h
[2] base-nova/src/core/include/core_rm_session.h
[3] base/src/base/process/process.cc
[4] base-nova/src/core/core_rm_session.cc
Kernel patch:
Introduce a transfer item type to express that a cap should be translated
and if this fails to map it instead.
It would be possible without this combined transfer item type however
with additional overhead. In this case Genode/NOVA would
have to map and translate all caps used as parameter in IPC. It would look
like this:
* If the map and translation succeed, the cap at the new cap index
would have to be revoked. Then the translated cap index can be used.
* If the map succeeds and the translation fails then the mapped cap index
can be used.
* It would become complicated when multiple caps are mapped and translated
and only some of the translation succeed. In such cases Genode would have
to figure out the right relation of translated/mapped and not
translated/mapped caps. It would require to make some assumption about the
order how translated/mapped caps are reported at the UTCB by the kernel.
All the points above lead to the decision to create a separate transfer item
type for that.
Genode:
Most the times the translation succeeds, mapping of caps happens either
seldom. This takes now a bit the pressure of not enough aligned receive
cap windows as described in issue #247.
The patch mainly adds adjustments to handle the
translated and mapped caps correctly especially during freeing of the
receive window (don't free translated cap indexes).
Fixes#268
Use git to get recent kernels from github. Adjust NOVA patch to compile
with recent github version. Patch and use makefile of NOVA microkernel
to avoid duplicated (and outdated) makefile in Genode
Furthermore, this patch adds support for using NOVA on x86_64. The
generic part of the syscall bindings has been moved to
'base-nova/include/nova/syscall-generic.h'. The 32/64-bit specific
parts are located at 'base-nova/include/32bit/nova/syscalls.h' and
'base-nova/include/64bit/nova/syscalls.h' respectively.
On x86_64, the run environment boots qemu using the Pulsar boot loader
because GRUB legacy does not support booting 64bit ELF executables.
In addition to the NOVA-specific changes in base-nova, this patch
rectifies compile-time warnings or build errors in the 'ports' and
'libports' repositories that are related to NOVA x86_64 (i.e., Vancouver
builds for 32bit only and needed an adaptation to NOVAs changed
bindings)
Fixes#233, fixes#234