This was an error output-line for each affected packet previously but it
is pretty normal for the router to receive packets whose network layer
protocol it doesn't know . In the default case, these packets shall be
ignored silently.
Ref #2490
One can configure the NIC router to act as DHCP server at interfaces of a
domain by adding the <dhcp> tag to the configuration of the domain like
this:
<domain name="vbox" interface="10.0.1.1/24">
<dhcp-server ip_first="10.0.1.80"
ip_last="10.0.1.100"
ip_lease_time_sec="3600"
dns_server="10.0.0.2"/>
...
</domain>
The attributes ip_first and ip_last define the available IPv4 address
range while ip_lease_time_sec defines the lifetime of an IPv4 address
assignment in seconds. The IPv4 address range must be in the subnet
defined by the interface attribute of the domain tag and must not cover
the IPv4 address in this attribute. The dns_server attribute gives the
IPv4 address of the DNS server that might also be in another subnet.
The lifetime of an offered assignment is the configured round trip time of
the router while the ip_lease_time_sec is applied only if the offer is
requested by the client in time.
The ports/run/virtualbox_nic_router.run script is an example of how to
use the new DHCP server functionality.
Ref #2490
Previously, garbage collect was only done when an incoming packet passed the
Ethernet checks. Now it is really done first when receiving a packet at an
interface.
Ref #2490
If the router has no gateway attribute for a domain (means that the router
itself is the gateway), and it gets an ARP request for a foreign IP, it shall
answer with its own IP.
Ref #2490
Do not use two times the RTT for the lifetime of links but use it as
it is configured to simplify the usage of the router. Internally, use
Microseconds/Duration type instead of plain integers.
Ref #2490
The nic_dump uses a wrapper for all supported protocols that
takes a packet and a verbosity configuration. The wrapper object can
than be used as argument for a Genode log function and prints the
packet's contents according to the given configuration. The
configuration is a distinct class to enable the reuse of one instance
for different packets.
There are currently 4 possible configurations for each protocol:
* NONE (no output for this protocol)
* SHORT (only the protocol name)
* COMPACT (the most important information densely packed)
* COMPREHENSIVE (all header information of this protocol)
Ref #2490
Provide utilities for appending new options to an existing DHCP packet
and a utility for finding existing options that returns a typed option
object. Remove old version that return untyped options.
Ref #2490
Apply the style rule that an accessor is named similar to the the underlying
value. Provide read and write accessors for each mandatory header attribute.
Fix some incorrect structure in the headers like with the flags field
in Ipv4_packet.
Ref #2490
Encapsulate the enum into a struct so that it is named
Ethernet_frame::Type::Enum, give it the correct storage type
uint16_t, and remove those values that are (AFAIK) not used by
now (genode, world).
Ref #2490
Do not stop routing if the transport layer protocol is unknown but
continue with trying IP routing instead. The latter was already
done when no transport routing could be applied but for unknown transport
protocols we caught the exception at the wrong place.
Ref #2490
The NIC router always reports the link state "Up" (true) because
the effective link state depends on the targeted remote interface
and thus on the individual routing for each packet. Consequently,
also the signal handler for state changes gets ignored.
Ref #2490
IP stacks may treat a network interface as "down" when it states a MAC
address with the I/G bit (bit 40) set to "Group" (value 0) instead of
"Individual" (value 1). This was observed with a TinyCore 8 inside a
Virtualbox VM. Thus, the previously choosen 03:03:03:03:03:00 as base
for the MAC address allocator is bad. Now we use the 02:02:02:02:02:00
instead. This also ensures that the MAC addresses are not marked as
"Universal" but as "Local" (bit 41, value 1) which is correct in general
as the router allocates MAC addresses only for virtual networks.
Ref #2490
The NIC dump component didn't support forwarding of link states and link-state
signals until now. Furthermore, it now prints MAC address and link state
on session creation and on every link state change.
Ref #2490
Previously, the uplink session was created on component startup while the
creation of the downlink session is timed by the client component. This
created a time span in which packets from the uplink were dropped at the
nic_dump. Now the uplink session-request is done by the session component
of the downlink.
Ref #2490
Add a "writeable" policy option to the ahci_drv and part_blk Block
servers and default from writeable to ready-only. Should a policy
permit write acesss the session request argument "writeable" may still
downgrade a session to ready-only.
Fix#2469
The VFS library can be used in single-threaded or multi-threaded
environments and depending on that, signals are handled by the same thread
which uses the VFS library or possibly by a different thread. If a VFS
plugin needs to block to wait for a signal, there is currently no way
which works reliably in both environments.
For this reason, this commit makes the interface of the VFS library
nonblocking, similar to the File_system session interface.
The most important changes are:
- Directories are created and opened with the 'opendir()' function and the
directory entries are read with the recently introduced 'queue_read()'
and 'complete_read()' functions.
- Symbolic links are created and opened with the 'openlink()' function and
the link target is read with the 'queue_read()' and 'complete_read()'
functions and written with the 'write()' function.
- The 'write()' function does not wait for signals anymore. This can have
the effect that data written by a VFS library user has not been
processed by a file system server yet when the library user asks for the
size of the file or closes it (both done with RPC functions at the file
system server). For this reason, a user of the VFS library should
request synchronization before calling 'stat()' or 'close()'. To make
sure that a file system server has processed all write request packets
which a client submitted before the synchronization request,
synchronization is now requested at the file system server with a
synchronization packet instead of an RPC function. Because of this
change, the synchronization interface of the VFS library is now split
into 'queue_sync()' and 'complete_sync()' functions.
Fixes#2399
This is expected by hardware terminals, ie., terminal programs connected
to null-modem serial connections. Otherwise, the next line starts at the
column right after the last line.
This patch ensures that fs_rom delivers a ROM-update notification in the
case where the underlying file was changed in-between requesting the
initial ROM content and registering the signal handler.
With the introduction of the CONTENT_CHANGED notifications delivered via
the packet stream, the assumption that no more than one READ packet is
in flight at all times does no longer hold. If the fs server responds
to a CONTENT_CHANGED packet while the fs_rom expects the completion of a
read request, the '_update_dataspace' method would prematurely return,
leaving the dataspace unpopulated. This patch solves the problem by
specifically waiting for the completion of the read request.
Appending a suffix to report filenames was behavior inherited from
fs_log, it prevents creating files where directories need to be created
later. But unlike logs, only a subset of the hierarchy will report and
those that do append a component-local label, so the risk of collision
is low.
By removing the suffix fs_rom can serve reports back as ROM just as
report_rom does.
Ref #2422
Previously, the Genode::Timer::curr_time always used the
Timer_session::elapsed_ms RPC as back end. Now, Genode::Timer reads
this remote time only in a periodic fashion independently from the calls
to Genode::Timer::curr_time. If now one calls Genode::Timer::curr_time,
the function takes the last read remote time value and adapts it using
the timestamp difference since the remote-time read. The conversion
factor from timestamps to time is estimated on every remote-time read
using the last read remote-time value and the timestamp difference since
the last remote time read.
This commit also re-works the timeout test. The test now has two stages.
In the first stage, it tests fast polling of the
Genode::Timer::curr_time. This stage checks the error between locally
interpolated and timer-driver time as well as wether the locally
interpolated time is monotone and sufficiently homogeneous. In the
second stage several periodic and one-shot timeouts are scheduled at
once. This stage checks if the timeouts trigger sufficiently precise.
This commit adds the new Kernel::time syscall to base-hw. The syscall is
solely used by the Genode::Timer on base-hw as substitute for the
timestamp. This is because on ARM, the timestamp function uses the ARM
performance counter that stops counting when the WFI (wait for
interrupt) instruction is active. This instruction, however is used by
the base-hw idle contexts that get active when no user thread needs to
be scheduled. Thus, the ARM performance counter is not a good choice for
time interpolation and we use the kernel internal time instead.
With this commit, the timeout library becomes a basic library. That means
that it is linked against the LDSO which then provides it to the program it
serves. Furthermore, you can't use the timeout library anymore without the
LDSO because through the kernel-dependent LDSO make-files we can achieve a
kernel-dependent timeout implementation.
This commit introduces a structured Duration type that shall successively
replace the use of Microseconds, Milliseconds, and integer types for duration
values.
Open issues:
* The timeout test fails on Raspberry PI because of precision errors in the
first stage. However, this does not render the framework unusable in general
on the RPI but merely is an issue when speaking of microseconds precision.
* If we run on ARM with another Kernel than HW the timestamp speed may
continuously vary from almost 0 up to CPU speed. The Timer, however,
only uses interpolation if the timestamp speed remained stable (12.5%
tolerance) for at least 3 observation periods. Currently, one period is
100ms, so its 300ms. As long as this is not the case,
Timer_session::elapsed_ms is called instead.
Anyway, it might happen that the CPU load was stable for some time so
interpolation becomes active and now the timestamp speed drops. In the
worst case, we would now have 100ms of slowed down time. The bad thing
about it would be, that this also affects the timeout of the period.
Thus, it might "freeze" the local time for more than 100ms.
On the other hand, if the timestamp speed suddenly raises after some
stable time, interpolated time can get too fast. This would shorten the
period but nonetheless may result in drifting away into the far future.
Now we would have the problem that we can't deliver the real time
anymore until it has caught up because the output of Timer::curr_time
shall be monotone. So, effectively local time might "freeze" again for
more than 100ms.
It would be a solution to not use the Trace::timestamp on ARM w/o HW but
a function whose return value causes the Timer to never use
interpolation because of its stability policy.
Fixes#2400
This patch reduces the number of exception types by facilitating
globally defined exceptions for common usage patterns shared by most
services. In particular, RPC functions that demand a session-resource
upgrade not longer reflect this condition via a session-specific
exception but via the 'Out_of_ram' or 'Out_of_caps' types.
Furthermore, the 'Parent::Service_denied', 'Parent::Unavailable',
'Root::Invalid_args', 'Root::Unavailable', 'Service::Invalid_args',
'Service::Unavailable', and 'Local_service::Factory::Denied' types have
been replaced by the single 'Service_denied' exception type defined in
'session/session.h'.
This consolidation eases the error handling (there are fewer exceptions
to handle), alleviates the need to convert exceptions along the
session-creation call chain, and avoids possible aliasing problems
(catching the wrong type with the same name but living in a different
scope).
This patch mirrors the accounting and trading scheme that Genode employs
for physical memory to the accounting of capability allocations.
Capability quotas must now be explicitly assigned to subsystems by
specifying a 'caps=<amount>' attribute to init's start nodes.
Analogously to RAM quotas, cap quotas can be traded between clients and
servers as part of the session protocol. The capability budget of each
component is maintained by the component's corresponding PD session at
core.
At the current stage, the accounting is applied to RPC capabilities,
signal-context capabilities, and dataspace capabilities. Capabilities
that are dynamically allocated via core's CPU and TRACE service are not
yet covered. Also, the capabilities allocated by resource multiplexers
outside of core (like nitpicker) must be accounted by the respective
servers, which is not covered yet.
If a component runs out of capabilities, core's PD service prints a
warning to the log. To observe the consumption of capabilities per
component in detail, the PD service is equipped with a diagnostic
mode, which can be enabled via the 'diag' attribute in the target
node of init's routing rules. E.g., the following route enables the
diagnostic mode for the PD session of the "timer" component:
<default-route>
<service name="PD" unscoped_label="timer">
<parent diag="yes"/>
</service>
...
</default-route>
For subsystems based on a sub-init instance, init can be configured
to report the capability-quota information of its subsystems by
adding the attribute 'child_caps="yes"' to init's '<report>'
config node. Init's own capability quota can be reported by adding
the attribute 'init_caps="yes"'.
Fixes#2398
This patch reworks the implementation of core's RAM service to make use
of the 'Session_object' and to remove the distinction between the
"metadata" quota and the managed RAM quota. With the new implementation,
the session implicitly allocates its metadata from its own account. So
there is not need to handle 'Out_of_metadata' and 'Quota_exceeded' via
different exceptions. Instead, the new version solely uses the
'Out_of_ram' exception.
Furthermore, the 'Allocator::Out_of_memory' exception has become an alias
for 'Out_of_ram', which simplifies the error handling.
Issue #2398
This patch replaces the 'Parent::Quota_exceeded',
'Service::Quota_exceeded', and 'Root::Quota_exceeded' exceptions
by the single 'Insufficient_ram_quota' exception type.
Furthermore, the 'Parent' interface distinguished now between
'Out_of_ram' (the child's RAM is exhausted) from
'Insufficient_ram_quota' (the child's RAM donation does not suffice to
establish the session).
This eliminates ambiguities and removes the need to convert exception
types along the path of the session creation.
Issue #2398
This patch replaces the former use of size_t with the use of the
'Ram_quota' type to improve type safety (in particular to avoid
accidentally mixing up RAM quotas with cap quotas).
Issue #2398
The 'Ram_allocator' interface contains the subset of the RAM session
interface that is needed to satisfy the needs of the 'Heap' and
'Sliced_heap'. Its small size makes it ideal for intercepting memory
allocations as done by the new 'Constrained_ram_allocator' wrapper
class, which is meant to replace the existing 'base/allocator_guard.h'
and 'os/ram_session_guard.h'.
Issue #2398