This enables installation of the bootloader image without wiping the
partition table which is needed at least for the tz_vmm tutorial with
hw_usb_armory.
Ref #1497
Causes trouble if a gz image is loaded via grub and later used as initrd for a
Linux VM (e.g. with Seoul VMM)
Discovered during Turmvilla scenario #1552 and issue #1733.
To make the creation of a bootstrap medium for most ARM platforms more
comfortable this tool shall bundle all the different U-Boot source
states, patches, and MMC preparation rules that we gathered over the
year for that purpose. As input, the tool merely needs the targeted
platform (analogous to the platform parameter of 'create_builddir'). By
now, 'hw_wand_quad' is the only supported platform. Further platforms
can be added successively. As output, the tool creates a head image file
of small size (8MiB) that can be copied (dd) with offset 0 to the MMC.
Fixes#1730
This makes use of the iPXE sanboot command [1] which downloads and
boots an ISO image directly via HTTP. Therefore, your RUN_OPT needs
both
--include image/iso and
--include load/ipxe
NOTE: The webserver serving the ISO image must support ranged requests,
see [2].
[1] - http://ipxe.org/cmd/sanboot
[2] - http://forum.ipxe.org/showthread.php?tid=7295&pid=10482#pid10482
iPXE is an open source network boot firmware which supports booting from
a web server via HTTP [1].
The following two parameters can be used to specify the iPXE/HTTP setup:
--load-ipxe-base-dir
This parameter specifies the base directory of the HTTP server from
which the target machine downloads the files.
--load-ipxe-boot-dir
The directory relative to iPXE base dir which contains the iPXE
chainload configuration and all necessary files.
The target machine is expected to request the following iPXE
configuration via HTTP:
http://${HOST_URL}/${ipxe-boot-dir}/boot.cfg
This can be achieved by building iPXE with the following embedded
script:
#!ipxe
dhcp
chain http://${HOST_URL}/${ipxe-boot-dir}/boot.cfg
See also [2] for additional information.
[1] - http://ipxe.org/
[2] - http://ipxe.org/howto/chainloading#breaking_the_loop_with_an_embedded_scriptFixes#1708
The commit consumes the argument of a unsupported printf command.
Without the commit - a subsequent command uses the argument of the preceding
command, which may cause memory corruption or page faults for sequences using
string commands, e.g.
Genode::printf("%#x %s\n", 0x20, "Test");
'#' is not supported by Genode::printf. In this scenario a pagefault at
address 0x20 is caused.
Fixes#1701
Instead of holding SPEC-variable dependent files and directories inline
within the repository structure, move them into 'spec' subdirectories
at the corresponding levels, e.g.:
repos/base/include/spec
repos/base/mk/spec
repos/base/lib/mk/spec
repos/base/src/core/spec
...
Moreover, this commit removes the 'platform' directories. That term was
used in an overloaded sense. All SPEC-relative 'platform' directories are
now named 'spec'. Other files, like for instance those related to the
kernel/architecture specific startup library, where moved from 'platform'
directories to explicit, more meaningful places like e.g.: 'src/lib/startup'.
Fix#1673
The plugin works just like the netio plugin and uses the following
parameters
--power-off-energenie-host network address of device
--power-off-energenie-password password for device
--power-off-energenie-port target port of device
The run plugin is not generic and works for NETIO4/NETIO230 powerplugs
only. Further, this opens the path for other vendor-specific powerplug
plugins.
Note, the plugin parameter for the addressed powerplug was renamed to
--power-on-netio-host resp.
--power-off-netio-host
The hw_x86_64_muen platform is a x86/64 base-hw kernel which runs as
isolated subject (guest) on the Muen Separation Kernel (SK) [1].
The platform is implemented as an extension to hw_x86_64 replacing the
PIC and timer drivers with paravirtualized variants. The skeleton
contains a dummy PIC and timer implementation for now.
[1] - http://muen.sk
If a requested report already exists the request is denied with
Invalid_args.
Further, I dusted the report_rom test and added it to the
autopilot list.
If a user has e.g. /tftpboot/x86 as directory and configures
base_dir=/tftboot and offset_dir=/x86, this leads to bad behavior
as the load module creates a symlink
/tftpboot/x86/<builddir> -> <absolut_builddir>
in this case instead of the desired
/tftpboot/x86 -> <absolut_builddir>
Furthermore, the module works on
/tftpboot/x86/config-00-00-00-00-00-00
and
/tftpboot/x86/<builddir>/config-00-00-00-00-00-00
afterwards, which looks bad too. As there is no warning at all, this can
be hard to debug. The commit adds an appropriate check with error message and
exit -1 on an existing directory.
Fixes#1630
If just one multiboot kernel module was loaded after bender, the
relocation was skipped before. This resulted in a corrupt binary image
on ELF loading if the regions of the boot module and the final program
overlap. Now, all modules are copied below 2 GiB (and out of the way)
before ELF loading.
Fixes#1624
Bender upstream issue is TUD-OS/morbo#4
The base-hw kernel on x86_64 currently assumes 254 MiB of RAM. The RAM
region is subtracted from the I/O mem allocator and therefore this range
is not available for device I/O.
If qemu is started with -m 128, the region for (emulated) PCI config
space access lies within this region and I/O mem allocation in the
pci_drv will fail. Giving qemu more RAM moves the PCI config space out
of the 254 MiB region, making the run/libc_ffat scenario with acpi work.