* Remove SPEC declarations from mk/spec
* Remove all board-specific REQUIRE declaratiions left
* Replace [have_spec <board>] run-script declarations with have_board where necessary
* Remove addition of BOARD variable to SPECS in toplevel Makefile
* Move board-specific directories in base-hw out of specs
Let the NIC router provide an Uplink service besides the Nic service that it
already provided. Requests for an Uplink session towards the NIC router are
assigned to Domains using the same <policy> configuration tags that are used in
order to assign Nic session requests. The MAC addresses of Uplink session
components are _NOT_ considered during the allocation of MAC addresses for NIC
session components at the same Domain. The task of avoiding MAC address clashes
between Uplink session components and Nic session components is therefore left
to the integrator. Apart from that, Uplink session components are treated by
the NIC router like any other interface.
Ref #3961
The keys, mute, touchpad toggle (Fn-F4) and rfkill may be reported by some
Fujitsu machines via the ACPI FUJ02E3 ACPI device. With this commit limited
support to detect the 3 keys are added and will be reported as Genode report.
This commit restores the diag feature for selecting diagnostic output of
services provided by core. This feature became unavailable with commit
"base: remove dependency from deprecated APIs", which hard-wired the
diag flag for core services to false.
To control this feature, three possible policies can be expressed in a
routing target of init's configuration:
* Forcing silence by specifying 'diag="no"'
* Enabling diagnostics by specifying 'diag="yes"'
* Forwarding the preference of the client by omitting the 'diag'
attribute
Fixes#3962
* The NIC router now considers, memorizes, and, if configured, reports
multiple DHCP option 6 entries from DHCP replies that it received as DHCP
client
* A DHCP server at the NIC router can now be configured statically with
multiple DNS server addresses to propagate
* The 'dns_server_from' attribute of the DHCP server of the NIC router now
supports the forwarding of multiple DNS server addresses
* The automated run/nic_router_dhcp test tests all the above mentioned new
functionality and reconfiguring it at runtime. The test was added to the
autopilot.
* All run scripts were adapted to fit the new NIC router configuration
interface
Fixes#3952
Log a warning when the lwIP VFS plugin queues a read while waiting
for an interface to become ready. By comparision the Lxip plugin
has the same behavior but a more verbose initialization process.
Fix#3920
This prevents later file-descriptor shortage when opening files on
demand, which can't be reflected to the application in a sane manner.
The real fix is to open socket files not on libc level but on VFS level
only effectively consume one libc file descriptor for one socket.
Now, the USB connection is established on backend initialization and
terminated on backend exit triggered by high-level libusb code.
Thanks to Peter for the patch.
- unlink shared memory files
- lower maximum number of socket pool sockets to reduce chance of file
descriptor exhaustion
- fix a build dependency which caused sporadic parallel build errors
Fixes#3910
With this commit, the alignment of anonymous 'mmap()' allocations can be
configured like this:
<config>
<libc>
<mmap align_log2="21"/>
</libc>
</config>
Fixes#3907
This plugin gives access to the Audio_out session by roughly
implementing a OSS pseudo-device. It merely wrapps the session and does
not provide any resampling or re-coding.
Fixes#3891.
In the same vein as the terminal and block I/O controls, the sound
controls are implemented via poperty files and match the OSS
API ([1] features a nice overview while [2] is v3 and [3] gives
in-depth information on the current v4.x API we eventually might want
to implement).
[1] https://wiki.freebsd.org/RyanBeasley/ioctlref/
[2] http://www.opensound.com/pguide/oss.pdf
[3] http://manuals.opensound.com/developer/
The controls currently implemented are the ones used by the cmus OSS
output plugin, which was the driving factor behind the implementation.
It uses the obsolete (v3) API and does not check if the requested
parameter was actually set, which should be done according to the
official OSS documentation.
At the moment it is not possible to set or rather change any
parameters. In case the requested setting differs from the parameters
of the underlying Audio_out session - in contrast to the suggestion in
the OSS manual - we do not silently adjust the parameters returned
to the callee but outright fail the I/O control operation.
The following list contains all currently handled I/O controls.
* SNDCTL_DSP_CHANNELS sets the number of channels. We return the
available channels here and return ENOTSUP if it differs from
the requested number of channels.
* SNDCTL_DSP_GETOSPACE returns amount of playback data that can
be written without blocking. For now it amounts the space left
in the Audio_out packet-stream.
* SNDCTL_DSP_POST forces playback to start. We do nothing and return
success.
* SNDCTL_DSP_RESET is supposed to reset the device when it is
active before any parameters are changed. We do nothing and return
success.
* SNDCTL_DSP_SAMPLESIZE sets the sample size. We return the
sample size of the underlying Audio_out session and return ENOTSUP
if it differs from the requested number of channels.
* SNDCTL_DSP_SETFRAGMENT sets the buffer size hint. We ignore the
hint and return success.
* SNDCTL_DSP_SPEED sets the samplerate. For now, we always return
the rate of the underlying Audio_out session and return ENOTSUP
if it differs from the requested one.
This commit serves as a starting point for further implementing the
OSS API by exploring more users, e.g. as VirtualBox/Qt5/SDL2 audio
backend or a more sophisticated progam like sndiod.
Issue #3891.
Right now the same code dealing with nic setup on qemu is duplicated
in many different run scripts. It makes it unnecesarily complex to
change the existing config or add support for new nic types. Lets move
all this common code to qemu.inc.
Ref #3825
The deadlock occured with three concurrently running threads: two
waiters calling pthread_cond_timedwait() and one signaller calling
pthread_cond_signal().
If waiter W1 hits its timeout, the signaller may have called
pthread_cond_signal(), detected this waiter and posted the internal
'signal_sem' concurrently. Then, the signaller waits for 'handshake_sem'
to ensure the waiter got woken up.
Waiter W1 can't consume the 'signal_sem' post by
'sem_wait(&c->signal_sem)' because another waiter W2 may have consumed
the post already above in sem_wait/timedwait(). Waiting for a post on
'signal_sem' would block the waiter W1 in perfect deadlock with
signaller on 'handshake_sem'. As W1 also owns 'counter_mutex' in this
situation, waiter W2 would block when trying to aquire 'counter_mutex'
and can't resolve the situation.
So, W1 does nothing in this case and we accept the spurious wakeup on
next pthread_cond_wait/timedwait().