The new SD card driver at 'os/src/drivers/sd_card/omap4' allows the use
of an SD card with the Pandaboard as block service. Currently, the
driver is using PIO, no DMA, and no IRQs. The driver can be tested using
the 'os/run/sd_card.run' script.
Rm_client is derived from Pager_object. If the Pager_object is also
derived from Thread_base (which is the case for NOVA) then the
Rm_client object must be destructed without holding the rm_session_object
lock. The native platform specific Thread_base implementation has to take
care that all in-flight page handling requests are finished before
destruction. On NOVA it is done by doing an IPC to the pager thread.
(performed in Pager_object::dissolve() in base-nova). The
called thread than executes its operation until end which also requires
in some cases to take the rm_session_object lock.
Since _client_slab insertion/deletion also must be performed
synchronized but can't be protected by the rm_session_object lock
because of the described dead_lock situation, we have
to use a synchronized allocator object to perform insertion and
deletion of Rm_clients.
Following deadlock happens when a Rm_client/Pager_object handles a page-fault
and concurrently the same object is dissolved (triggered by parent killing
the client).
The situation is as follows:
Page fault handling :
base-nova/src/base/pager/pager.cc : pf_handler() - lock pf_lock
base/.../core/rm_session_component.cc: pager() - lock rm_session
(in reverse_lookup())
Dissolve of Rm_client:
base/src/core/rm_session_component.cc: dissolve() - lock rm_session
base-nova/src/base/pager/pager.cc : dissolve() - lock pf_lock
The pf_lock is not required here during normal page fault handling,
since this pager object @NOVA is executed only by one and the same
thread and all critical operations inside the rm_session_object itself
are locked anyway. The only critical point is the destruction of the
Pager_object which is already handled in the both dissolve functions
of the rm-session_component (locking) and the pager_object (finalize
in-flight page faults).
Allocate exc_pt_sel inside Thread_base object
instead of pager object, since it is a thread
specific characteristic.
Same for freeing of the thread capabilities:
- ec, sc, rs, exc_pt_sel is thread specific
and has nothing to do in server nor pager object.
The invalid thread is specified as 0,0,-1 (ec cap, sc cap, sem cap).
The main thread is specified as 0,0,0.
The comparator identified "tid_main == tid_invalid" as equal,
which is obviously wrong.
The patch compares at least ec and sem cap.
Use semaphore down feature of NOVA to set the counter to zero.
If the semaphore was up()ed more than one time by impatient callers
(e.g. guys calling cancel_blocking) we make sure that the thread
really stops.
Don't allocate ec cap twice, in pager.cc and thread_start.cc.
Unmap of utcb has to be done in destructor of thread class, not
in pager class. Free capability selectors of ec and rs.
Invoke cancel_blocking before calling the
cleanup portal of the rpc_entrypoint. If a rpc_entrypoint
is blocked in a semaphore the cleanup call gets
stuck forever.
If nobody is blocked in a semaphore, nothing can be dequeued. If
the semaphore is used for signalling, there can be somebody in the queue,
but not necessarily.
This patch replaces the first attempt to resolve the ambiguity of using
the size_t type that occurred when 'loader_session.h' was included
alongside libc headers. Instead of explicitly qualifying each occurrence
of the type, the new solution defines 'size_t' within the 'Loader' namespace.
Fixes#253
The CML2 configuration system calls 'evn python' and expects version
2.x. So we check if python2 is installed when preparing Pistachio and
use the found version instead.
Fixes#264.
Some type size tests in the findutils source code expect the 'time_t' type
to be of the same size as the 'long' type, whereas the Genode libc defines
it as '__int64_t' for ARM. This patch disables these tests.
Fixes#262.
Eliminate prints to stderr for normal messages, because it leads to exceptional
returns in TCL-scripts e.g. when run-script is triggered by the autopilot even
if the script's return code itself will be zero.
In the create_builddir script the foc_x86_64 platform was missing
when adding x86-drivers to the etc/build.conf file. This lead to
failed run-scripts initiated by the autopilot tool.
The compiler complained about ambigous references when compiling a
lx_hybrid program using the loader session. Here are some error
messages:
genode/os/include/loader_session/loader_session.h:72: error: reference to 'size_t' is ambiguous
/usr/lib/gcc/i486-linux-gnu/4.4.5/include/stddef.h:211: error: candidates are: typedef unsigned int size_t
genode/base/include/base/stdint.h:25: error: typedef unsigned int Genode::size_t
genode/os/include/loader_session/loader_session.h:72: error: reference to 'size_t' is ambiguous
/usr/lib/gcc/i486-linux-gnu/4.4.5/include/stddef.h:211: error: candidates are: typedef unsigned int size_t
genode/base/include/base/stdint.h:25: error: typedef unsigned int Genode::size_t
...
This commit qualifies size_t using the Genode namespace which fixes
the compilation.
Make pxe optional and use by default grub.
For that to work we use objcopy to repack the elf64
file into elf32.
With this commit more tests succeed. Most
tests use 64M and with that pulsar even does not start
the hypervisor. With 96M more test run however that would
mean to adjust most of the run scripts ...