Noux cleanup and source documentation

This patch decomposes the former 'child.h' into several header files,
unifies the naming of classes, and adds source-code documentation.
This commit is contained in:
Norman Feske 2012-02-22 22:24:32 +01:00
parent 2bbf40d76a
commit 7c98268901
7 changed files with 862 additions and 641 deletions

View File

@ -16,8 +16,6 @@
/* Genode includes */ /* Genode includes */
#include <init/child_policy.h> #include <init/child_policy.h>
#include <ram_session/connection.h>
#include <cpu_session/connection.h>
#include <base/signal.h> #include <base/signal.h>
#include <base/semaphore.h> #include <base/semaphore.h>
#include <cap_session/cap_session.h> #include <cap_session/cap_session.h>
@ -30,6 +28,10 @@
#include <noux_session/capability.h> #include <noux_session/capability.h>
#include <args.h> #include <args.h>
#include <environment.h> #include <environment.h>
#include <local_rm_service.h>
#include <ram_session_component.h>
#include <cpu_session_component.h>
namespace Noux { namespace Noux {
@ -61,11 +63,7 @@ namespace Noux {
/** /**
* Return singleton instance of PID allocator * Return singleton instance of PID allocator
*/ */
Pid_allocator *pid_allocator() Pid_allocator *pid_allocator();
{
static Pid_allocator inst;
return &inst;
}
class Child; class Child;
@ -155,598 +153,23 @@ namespace Noux {
*/ */
struct Resources struct Resources
{ {
/* /**
* XXX not used yet * Entrypoint used to serve the RPC interfaces of the
* locally-provided services
*/ */
struct Dataspace_destroyer Rpc_entrypoint &ep;
{
virtual void destroy(Dataspace_capability) = 0;
};
class Dataspace_registry;
class Dataspace_info : public Object_pool<Dataspace_info>::Entry
{
private:
size_t _size;
Dataspace_capability _ds_cap;
Dataspace_destroyer &_destroyer;
public:
Dataspace_info(Dataspace_capability ds_cap,
Dataspace_destroyer &destroyer)
:
Object_pool<Dataspace_info>::Entry(ds_cap),
_size(Dataspace_client(ds_cap).size()),
_ds_cap(ds_cap),
_destroyer(destroyer)
{ }
size_t size() const { return _size; }
Dataspace_capability ds_cap() const { return _ds_cap; }
/**
* Create shadow copy of dataspace
*
* \param ds_registry registry for keeping track of
* the new dataspace
* \param ep entrypoint used to serve the RPC
* interface of the new dataspace
* (used if the dataspace is a sub
* RM session)
* \return capability for the new dataspace
*/
virtual Dataspace_capability fork(Ram_session_capability ram,
Dataspace_destroyer &destroyer,
Dataspace_registry &ds_registry,
Rpc_entrypoint &ep) = 0;
/**
* Write data sequence into dataspace
*
* \param dst_offset destination offset within dataspace
* \param src data source buffer
* \param len length of source buffer in bytes
*/
virtual void poke(addr_t dst_offset, void const *src, size_t len) = 0;
Dataspace_destroyer &destroyer() { return _destroyer; }
};
class Dataspace_registry
{
private:
Object_pool<Dataspace_info> _pool;
public:
void insert(Dataspace_info *info)
{
_pool.insert(info);
}
void remove(Dataspace_info *info)
{
_pool.remove(info);
}
Dataspace_info *lookup_info(Dataspace_capability ds_cap)
{
return _pool.obj_by_cap(ds_cap);
}
};
struct Ram_dataspace_info : Dataspace_info,
List<Ram_dataspace_info>::Element
{
Ram_dataspace_info(Ram_dataspace_capability ds_cap,
Dataspace_destroyer &destroyer)
: Dataspace_info(ds_cap, destroyer) { }
Dataspace_capability fork(Ram_session_capability ram,
Dataspace_destroyer &destroyer,
Dataspace_registry &,
Rpc_entrypoint &)
{
size_t const size = Dataspace_client(ds_cap()).size();
Ram_dataspace_capability dst_ds;
try {
dst_ds = Ram_session_client(ram).alloc(size);
} catch (...) {
return Dataspace_capability();
}
void *src = 0;
try {
src = Genode::env()->rm_session()->attach(ds_cap());
} catch (...) { }
void *dst = 0;
try {
dst = Genode::env()->rm_session()->attach(dst_ds);
} catch (...) { }
if (src && dst)
memcpy(dst, src, size);
if (src) Genode::env()->rm_session()->detach(src);
if (dst) Genode::env()->rm_session()->detach(dst);
if (!src || !dst) {
Ram_session_client(ram).free(dst_ds);
return Dataspace_capability();
}
return dst_ds;
}
void poke(addr_t dst_offset, void const *src, size_t len)
{
if ((dst_offset >= size()) || (dst_offset + len > size())) {
PERR("illegal attemt to write beyond dataspace boundary");
return;
}
char *dst = 0;
try {
dst = Genode::env()->rm_session()->attach(ds_cap());
} catch (...) { }
if (src && dst)
memcpy(dst + dst_offset, src, len);
if (dst) Genode::env()->rm_session()->detach(dst);
}
};
struct Local_ram_session : Rpc_object<Ram_session>,
Dataspace_destroyer
{
List<Ram_dataspace_info> _list;
/*
* Track the RAM resources accumulated via RAM session
* allocations.
*/
size_t _used_quota;
Dataspace_registry &_registry;
/**
* Constructor
*/
Local_ram_session(Dataspace_registry &registry)
: _used_quota(0), _registry(registry) { }
/**
* Destructor
*/
~Local_ram_session()
{
Ram_dataspace_info *info = 0;
while ((info = _list.first()))
free(static_cap_cast<Ram_dataspace>(info->ds_cap()));
}
/***********************************
** Dataspace_destroyer interface **
***********************************/
/* XXX not used yet */
void destroy(Dataspace_capability ds)
{
free(static_cap_cast<Ram_dataspace>(ds));
}
/***************************
** Ram_session interface **
***************************/
Ram_dataspace_capability alloc(size_t size)
{
Ram_dataspace_capability ds_cap = env()->ram_session()->alloc(size);
Ram_dataspace_info *ds_info = new (env()->heap())
Ram_dataspace_info(ds_cap, *this);
_used_quota += ds_info->size();
_registry.insert(ds_info);
_list.insert(ds_info);
return ds_cap;
}
void free(Ram_dataspace_capability ds_cap)
{
Ram_dataspace_info *ds_info =
dynamic_cast<Ram_dataspace_info *>(_registry.lookup_info(ds_cap));
if (!ds_info) {
PERR("RAM free: dataspace lookup failed");
return;
}
_registry.remove(ds_info);
_list.remove(ds_info);
_used_quota -= ds_info->size();
env()->ram_session()->free(ds_cap);
Genode::destroy(env()->heap(), ds_info);
}
int ref_account(Ram_session_capability) { return 0; }
int transfer_quota(Ram_session_capability, size_t) { return 0; }
size_t quota() { return env()->ram_session()->quota(); }
size_t used() { return _used_quota; }
};
/** /**
* Used to record all RM attachements * Registry of dataspaces owned by the Noux process
*/ */
struct Local_rm_session : Rpc_object<Rm_session> Dataspace_registry ds_registry;
{
struct Region : List<Region>::Element
{
Dataspace_capability ds;
size_t size;
off_t offset;
addr_t local_addr;
Region(Dataspace_capability ds, size_t size,
off_t offset, addr_t local_addr)
:
ds(ds), size(size),
offset(offset), local_addr(local_addr)
{ }
/**
* Return true if region contains specified address
*/
bool contains(addr_t addr) const
{
return (addr >= local_addr)
&& (addr < local_addr + size);
}
};
Rm_connection _rm;
Dataspace_registry &_ds_registry;
List<Region> _regions;
Region *_lookup_region_by_addr(addr_t local_addr)
{
Region *curr = _regions.first();
for (; curr; curr = curr->next()) {
if (curr->contains(local_addr))
return curr;
}
return 0;
}
Local_rm_session(Dataspace_registry &ds_registry,
addr_t start = ~0UL, size_t size = 0)
: _rm(start, size), _ds_registry(ds_registry) { }
~Local_rm_session()
{
Region *curr = 0;
for (; curr; curr = curr->next())
detach(curr->local_addr);
}
/**
* Replay attachments onto specified RM session
*
* \param dst_ram backing store used for allocating the
* the copies of RAM dataspaces
*/
void replay(Ram_session_capability dst_ram,
Rm_session_capability dst_rm,
Dataspace_registry &ds_registry,
Rpc_entrypoint &ep)
{
/*
* XXX remove this
*/
struct Dummy_destroyer : Dataspace_destroyer
{
void destroy(Dataspace_capability) { }
};
static Dummy_destroyer dummy_destroyer;
Region *curr = _regions.first();
for (; curr; curr = curr->next()) {
Dataspace_capability ds;
Dataspace_info *info = _ds_registry.lookup_info(curr->ds);
if (info) {
/*
* XXX using 'this' as destroyer may be false,
* the destroyer should better correspond to
* dst_ram.
*/
ds = info->fork(dst_ram,
dummy_destroyer,
ds_registry,
ep);
if (!ds.valid())
PERR("replay: Error while forking dataspace");
/*
* XXX We could detect dataspaces that are
* attached more than once. For now, we
* create a new fork for each attachment.
*/
} else {
/*
* If the dataspace is not a RAM dataspace,
* assume that it's a ROM dataspace.
*
* XXX Handle ROM dataspaces explicitly. For
* once, we need to make sure that they
* remain available until the child process
* exits even if the parent process exits
* earlier. Furthermore, we would like to
* detect unexpected dataspaces.
*/
ds = curr->ds;
PWRN("replay: unknown dataspace type, assume ROM");
}
Rm_session_client(dst_rm).attach(ds, curr->size,
curr->offset,
true,
curr->local_addr);
}
}
void poke(addr_t dst_addr, void const *src, size_t len)
{
Region *region = _lookup_region_by_addr(dst_addr);
if (!region) {
PERR("poke: no region at 0x%lx", dst_addr);
return;
}
/*
* Test if start and end address occupied by the object
* type refers to the same region.
*/
if (region != _lookup_region_by_addr(dst_addr + len - 1)) {
PERR("attempt to write beyond region boundary");
return;
}
Dataspace_info *info = _ds_registry.lookup_info(region->ds);
if (!info) {
PERR("attempt to write to unknown dataspace type");
for (;;);
return;
}
if (region->offset) {
PERR("poke: writing to region with offset is not supported");
return;
}
info->poke(dst_addr - region->local_addr, src, len);
}
/**************************
** RM session interface **
**************************/
Local_addr attach(Dataspace_capability ds,
size_t size = 0, off_t offset = 0,
bool use_local_addr = false,
Local_addr local_addr = (addr_t)0)
{
if (size == 0)
size = Dataspace_client(ds).size();
/*
* XXX look if we can identify the specified dataspace.
* Is it a dataspace allocated via 'Local_ram_session'?
*/
local_addr = _rm.attach(ds, size, offset,
use_local_addr, local_addr);
/*
* Record attachement for later replay (needed during
* fork)
*/
_regions.insert(new (Genode::env()->heap())
Region(ds, size, offset, local_addr));
return local_addr;
}
void detach(Local_addr local_addr)
{
_rm.detach(local_addr);
Region *region = _lookup_region_by_addr(local_addr);
if (!region) {
PWRN("Attempt to detach unknown region at 0x%p",
(void *)local_addr);
return;
}
_regions.remove(region);
destroy(Genode::env()->heap(), region);
}
Pager_capability add_client(Thread_capability thread)
{
return _rm.add_client(thread);
}
void fault_handler(Signal_context_capability handler)
{
return _rm.fault_handler(handler);
}
State state()
{
return _rm.state();
}
Dataspace_capability dataspace()
{
return _rm.dataspace();
}
};
struct Sub_rm_dataspace_info : Dataspace_info
{
struct Dummy_destroyer : Dataspace_destroyer
{
void destroy(Dataspace_capability) { }
} _dummy_destroyer;
Local_rm_session &_sub_rm;
Sub_rm_dataspace_info(Local_rm_session &sub_rm)
:
Dataspace_info(sub_rm.dataspace(), _dummy_destroyer),
_sub_rm(sub_rm)
{ }
Dataspace_capability fork(Ram_session_capability ram,
Dataspace_destroyer &destoyer,
Dataspace_registry &ds_registry,
Rpc_entrypoint &ep)
{
Local_rm_session *new_sub_rm =
new Local_rm_session(ds_registry, 0, size());
Rm_session_capability rm_cap = ep.manage(new_sub_rm);
_sub_rm.replay(ram, rm_cap, ds_registry, ep);
ds_registry.insert(new Sub_rm_dataspace_info(*new_sub_rm));
return new_sub_rm->dataspace();
}
void poke(addr_t dst_offset, void const *src, size_t len)
{
if ((dst_offset >= size()) || (dst_offset + len > size())) {
PERR("illegal attemt to write beyond RM boundary");
return;
}
_sub_rm.poke(dst_offset, src, len);
}
};
/** /**
* Used to defer the execution of the process' main thread * Locally-provided services for accessing platform resources
*/ */
struct Local_cpu_session : Rpc_object<Cpu_session> Ram_session_component ram;
{ Cpu_session_component cpu;
bool const forked; Rm_session_component rm;
Cpu_connection cpu;
Thread_capability main_thread;
Local_cpu_session(char const *label, bool forked)
: forked(forked), cpu(label) { }
Thread_capability create_thread(Name const &name)
{
/*
* Prevent any attempt to create more than the main
* thread.
*/
if (main_thread.valid()) {
PWRN("Invalid attempt to create a thread besides main");
while (1);
return Thread_capability();
}
main_thread = cpu.create_thread(name);
PINF("created main thread");
return main_thread;
}
void kill_thread(Thread_capability thread) {
cpu.kill_thread(thread); }
Thread_capability first() {
return cpu.first(); }
Thread_capability next(Thread_capability curr) {
return cpu.next(curr); }
int set_pager(Thread_capability thread,
Pager_capability pager) {
return cpu.set_pager(thread, pager); }
int start(Thread_capability thread, addr_t ip, addr_t sp)
{
if (forked) {
PINF("defer attempt to start thread at ip 0x%lx", ip);
return 0;
}
return cpu.start(thread, ip, sp);
}
void pause(Thread_capability thread) {
cpu.pause(thread); }
void resume(Thread_capability thread) {
cpu.resume(thread); }
void cancel_blocking(Thread_capability thread) {
cpu.cancel_blocking(thread); }
int state(Thread_capability thread, Thread_state *dst) {
return cpu.state(thread, dst); }
void exception_handler(Thread_capability thread,
Signal_context_capability handler) {
cpu.exception_handler(thread, handler); }
void single_step(Thread_capability thread, bool enable) {
cpu.single_step(thread, enable); }
/**
* Explicitly start main thread, only meaningful when
* 'forked' is true
*/
void start_main_thread(addr_t ip, addr_t sp)
{
cpu.start(main_thread, ip, sp);
}
};
Rpc_entrypoint &ep;
Dataspace_registry ds_registry;
Local_ram_session ram;
Local_cpu_session cpu;
Local_rm_session rm;
Resources(char const *label, Rpc_entrypoint &ep, bool forked) Resources(char const *label, Rpc_entrypoint &ep, bool forked)
: :
@ -818,41 +241,7 @@ namespace Noux {
} _local_noux_service; } _local_noux_service;
struct Local_sub_rm_service : public Service Local_rm_service _local_rm_service;
{
Rpc_entrypoint &_ep;
Resources::Dataspace_registry &_ds_registry;
Local_sub_rm_service(Rpc_entrypoint &ep,
Resources::Dataspace_registry &ds_registry)
:
Service(Rm_session::service_name()),
_ep(ep), _ds_registry(ds_registry)
{ }
Genode::Session_capability session(const char *args)
{
addr_t start = Arg_string::find_arg(args, "start").ulong_value(~0UL);
size_t size = Arg_string::find_arg(args, "size").ulong_value(0);
Resources::Local_rm_session *rm =
new Resources::Local_rm_session(_ds_registry, start, size);
Genode::Session_capability cap = _ep.manage(rm);
_ds_registry.insert(new Resources::Sub_rm_dataspace_info(*rm));
return cap;
}
void upgrade(Genode::Session_capability, const char *args) { }
void close(Genode::Session_capability)
{
PWRN("Local_sub_rm_service::close not implemented, leaking memory");
}
} _local_sub_rm_service;
/** /**
* Exception type for failed file-descriptor lookup * Exception type for failed file-descriptor lookup
@ -891,16 +280,16 @@ namespace Noux {
* or children created via execve, or * or children created via execve, or
* true if the child is a fork from another child * true if the child is a fork from another child
*/ */
Child(char const *name, Child(char const *name,
int pid, int pid,
Signal_receiver *sig_rec, Signal_receiver *sig_rec,
Vfs *vfs, Vfs *vfs,
Args const &args, Args const &args,
char const *env, char const *env,
Cap_session *cap_session, Cap_session *cap_session,
Service_registry *parent_services, Service_registry *parent_services,
Rpc_entrypoint &resources_ep, Rpc_entrypoint &resources_ep,
bool forked) bool forked)
: :
_pid(pid), _pid(pid),
_sig_rec(sig_rec), _sig_rec(sig_rec),
@ -927,7 +316,7 @@ namespace Noux {
_sysio(_sysio_ds.local_addr<Sysio>()), _sysio(_sysio_ds.local_addr<Sysio>()),
_noux_session_cap(Session_capability(_entrypoint.manage(this))), _noux_session_cap(Session_capability(_entrypoint.manage(this))),
_local_noux_service(_noux_session_cap), _local_noux_service(_noux_session_cap),
_local_sub_rm_service(_entrypoint, _resources.ds_registry) _local_rm_service(_entrypoint, _resources.ds_registry)
{ {
_args.dump(); _args.dump();
strncpy(_name, name, sizeof(_name)); strncpy(_name, name, sizeof(_name));
@ -954,8 +343,7 @@ namespace Noux {
Ram_session_capability ram() const { return _resources.ram.cap(); } Ram_session_capability ram() const { return _resources.ram.cap(); }
Rm_session_capability rm() const { return _resources.rm.cap(); } Rm_session_capability rm() const { return _resources.rm.cap(); }
Dataspace_registry &ds_registry() { return _resources.ds_registry; }
Resources::Dataspace_registry &ds_registry() { return _resources.ds_registry; }
/**************************** /****************************
@ -985,7 +373,7 @@ namespace Noux {
* space. * space.
*/ */
if (strcmp(service_name, Rm_session::service_name()) == 0) if (strcmp(service_name, Rm_session::service_name()) == 0)
return &_local_sub_rm_service; return &_local_rm_service;
return _parent_services->find(service_name); return _parent_services->find(service_name);
} }

View File

@ -0,0 +1,134 @@
/*
* \brief CPU session provided to Noux processes
* \author Norman Feske
* \date 2012-02-22
*
* The custom implementation of the CPU session interface is used to tweak
* the startup procedure as performed by the 'Process' class. Normally,
* processes start execution immediately at creation time at the ELF entry
* point. For implementing fork semantics, however, this default behavior
* does not work. Instead, we need to defer the start of the main thread
* until we have finished copying the address space of the forking process.
* Furthermore, we need to start the main thread at a custom trampoline
* function rather than at the ELF entry point. Those customizations are
* possible by wrapping core's CPU service.
*/
/*
* Copyright (C) 2012 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _NOUX__CPU_SESSION_COMPONENT_H_
#define _NOUX__CPU_SESSION_COMPONENT_H_
/* Genode includes */
#include <base/rpc_server.h>
#include <cpu_session/connection.h>
namespace Noux {
using namespace Genode;
class Cpu_session_component : public Rpc_object<Cpu_session>
{
private:
bool const _forked;
Cpu_connection _cpu;
Thread_capability _main_thread;
public:
/**
* Constructor
*
* \param forked false if the CPU session belongs to a child
* created via execve or to the init process, or
* true if the CPU session belongs to a newly forked
* process.
*
* The 'forked' parameter controls the policy applied to the
* startup of the main thread.
*/
Cpu_session_component(char const *label, bool forked)
: _forked(forked), _cpu(label) { }
/**
* Explicitly start main thread, only meaningful when
* 'forked' is true
*/
void start_main_thread(addr_t ip, addr_t sp)
{
_cpu.start(_main_thread, ip, sp);
}
/***************************
** Cpu_session interface **
***************************/
Thread_capability create_thread(Name const &name)
{
/*
* Prevent any attempt to create more than the main
* thread.
*/
if (_main_thread.valid()) {
PWRN("Invalid attempt to create a thread besides main");
while (1);
return Thread_capability();
}
_main_thread = _cpu.create_thread(name);
PINF("created main thread");
return _main_thread;
}
void kill_thread(Thread_capability thread) {
_cpu.kill_thread(thread); }
Thread_capability first() {
return _cpu.first(); }
Thread_capability next(Thread_capability curr) {
return _cpu.next(curr); }
int set_pager(Thread_capability thread,
Pager_capability pager) {
return _cpu.set_pager(thread, pager); }
int start(Thread_capability thread, addr_t ip, addr_t sp)
{
if (_forked) {
PINF("defer attempt to start thread at ip 0x%lx", ip);
return 0;
}
return _cpu.start(thread, ip, sp);
}
void pause(Thread_capability thread) {
_cpu.pause(thread); }
void resume(Thread_capability thread) {
_cpu.resume(thread); }
void cancel_blocking(Thread_capability thread) {
_cpu.cancel_blocking(thread); }
int state(Thread_capability thread, Thread_state *dst) {
return _cpu.state(thread, dst); }
void exception_handler(Thread_capability thread,
Signal_context_capability handler) {
_cpu.exception_handler(thread, handler); }
void single_step(Thread_capability thread, bool enable) {
_cpu.single_step(thread, enable); }
};
}
#endif /* _NOUX__CPU_SESSION_COMPONENT_H_ */

View File

@ -0,0 +1,112 @@
/*
* \brief Registry for dataspaces used by noux processes
* \author Norman Feske
* \date 2012-02-22
*/
/*
* Copyright (C) 2012 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _NOUX__DATASPACE_REGISTRY_H_
#define _NOUX__DATASPACE_REGISTRY_H_
/* Genode includes */
#include <base/object_pool.h>
namespace Noux {
using namespace Genode;
/*
* XXX not used yet
*/
struct Dataspace_destroyer
{
virtual void destroy(Dataspace_capability) = 0;
};
class Dataspace_registry;
class Dataspace_info : public Object_pool<Dataspace_info>::Entry
{
private:
size_t _size;
Dataspace_capability _ds_cap;
Dataspace_destroyer &_destroyer;
public:
Dataspace_info(Dataspace_capability ds_cap,
Dataspace_destroyer &destroyer)
:
Object_pool<Dataspace_info>::Entry(ds_cap),
_size(Dataspace_client(ds_cap).size()),
_ds_cap(ds_cap),
_destroyer(destroyer)
{ }
size_t size() const { return _size; }
Dataspace_capability ds_cap() const { return _ds_cap; }
/**
* Create shadow copy of dataspace
*
* \param ds_registry registry for keeping track of
* the new dataspace
* \param ep entrypoint used to serve the RPC
* interface of the new dataspace
* (used if the dataspace is a sub
* RM session)
* \return capability for the new dataspace
*/
virtual Dataspace_capability fork(Ram_session_capability ram,
Dataspace_destroyer &destroyer,
Dataspace_registry &ds_registry,
Rpc_entrypoint &ep) = 0;
/**
* Write raw byte sequence into dataspace
*
* \param dst_offset destination offset within dataspace
* \param src data source buffer
* \param len length of source buffer in bytes
*/
virtual void poke(addr_t dst_offset, void const *src, size_t len) = 0;
Dataspace_destroyer &destroyer() { return _destroyer; }
};
class Dataspace_registry
{
private:
Object_pool<Dataspace_info> _pool;
public:
void insert(Dataspace_info *info)
{
_pool.insert(info);
}
void remove(Dataspace_info *info)
{
_pool.remove(info);
}
Dataspace_info *lookup_info(Dataspace_capability ds_cap)
{
return _pool.obj_by_cap(ds_cap);
}
};
}
#endif /* _NOUX__DATASPACE_REGISTRY_H_ */

View File

@ -0,0 +1,119 @@
/*
* \brief RM service provided to Noux processes
* \author Norman Feske
* \date 2012-02-22
*/
/*
* Copyright (C) 2012 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _NOUX__LOCAL_RM_SERVICE_H_
#define _NOUX__LOCAL_RM_SERVICE_H_
/* Genode includes */
#include <base/service.h>
/* Noux includes */
#include <dataspace_registry.h>
#include <rm_session_component.h>
namespace Noux {
using namespace Genode;
class Rm_dataspace_info : public Dataspace_info
{
private:
struct Dummy_destroyer : Dataspace_destroyer
{
void destroy(Dataspace_capability) { }
} _dummy_destroyer;
Rm_session_component &_sub_rm;
public:
Rm_dataspace_info(Rm_session_component &sub_rm)
:
Dataspace_info(sub_rm.dataspace(), _dummy_destroyer),
_sub_rm(sub_rm)
{ }
Dataspace_capability fork(Ram_session_capability ram,
Dataspace_destroyer &,
Dataspace_registry &ds_registry,
Rpc_entrypoint &ep)
{
Rm_session_component *new_sub_rm =
new Rm_session_component(ds_registry, 0, size());
Rm_session_capability rm_cap = ep.manage(new_sub_rm);
/*
* XXX Where to dissolve the RM session?
*/
_sub_rm.replay(ram, rm_cap, ds_registry, ep);
ds_registry.insert(new Rm_dataspace_info(*new_sub_rm));
return new_sub_rm->dataspace();
}
void poke(addr_t dst_offset, void const *src, size_t len)
{
if ((dst_offset >= size()) || (dst_offset + len > size())) {
PERR("illegal attemt to write beyond RM boundary");
return;
}
_sub_rm.poke(dst_offset, src, len);
}
};
class Local_rm_service : public Service
{
private:
Rpc_entrypoint &_ep;
Dataspace_registry &_ds_registry;
public:
Local_rm_service(Rpc_entrypoint &ep, Dataspace_registry &ds_registry)
:
Service(Rm_session::service_name()), _ep(ep),
_ds_registry(ds_registry)
{ }
Genode::Session_capability session(const char *args)
{
addr_t start = Arg_string::find_arg(args, "start").ulong_value(~0UL);
size_t size = Arg_string::find_arg(args, "size").ulong_value(0);
Rm_session_component *rm =
new Rm_session_component(_ds_registry, start, size);
Genode::Session_capability cap = _ep.manage(rm);
_ds_registry.insert(new Rm_dataspace_info(*rm));
return cap;
}
void upgrade(Genode::Session_capability, const char *args) { }
void close(Genode::Session_capability)
{
PWRN("Local_rm_service::close not implemented, leaking memory");
}
};
}
#endif /* _NOUX__LOCAL_RM_SERVICE_H_ */

View File

@ -435,6 +435,13 @@ static char const *env_string_of_init_process()
} }
Noux::Pid_allocator *Noux::pid_allocator()
{
static Noux::Pid_allocator inst;
return &inst;
}
void *operator new (Genode::size_t size) { void *operator new (Genode::size_t size) {
return Genode::env()->heap()->alloc(size); } return Genode::env()->heap()->alloc(size); }

View File

@ -0,0 +1,196 @@
/*
* \brief RAM service used by Noux processes
* \author Norman Feske
* \date 2012-02-22
*
* The custom implementation of the RAM session interface provides a pool of
* RAM shared by Noux and all Noux processes. The use of a shared pool
* alleviates the need to assign RAM quota to individual Noux processes.
*
* Furthermore, the custom implementation is needed to get hold of the RAM
* dataspaces allocated by each Noux process. When forking a process, the
* acquired information (in the form of 'Ram_dataspace_info' objects) is used
* to create a shadow copy of the forking address space.
*/
/*
* Copyright (C) 2012 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _NOUX__RAM_SESSION_COMPONENT_H_
#define _NOUX__RAM_SESSION_COMPONENT_H_
/* Genode includes */
#include <ram_session/capability.h>
#include <base/rpc_server.h>
#include <base/env.h>
/* Noux includes */
#include <dataspace_registry.h>
namespace Noux {
using namespace Genode;
struct Ram_dataspace_info : Dataspace_info,
List<Ram_dataspace_info>::Element
{
Ram_dataspace_info(Ram_dataspace_capability ds_cap,
Dataspace_destroyer &destroyer)
: Dataspace_info(ds_cap, destroyer) { }
Dataspace_capability fork(Ram_session_capability ram,
Dataspace_destroyer &destroyer,
Dataspace_registry &,
Rpc_entrypoint &)
{
size_t const size = Dataspace_client(ds_cap()).size();
Ram_dataspace_capability dst_ds;
try {
dst_ds = Ram_session_client(ram).alloc(size);
} catch (...) {
return Dataspace_capability();
}
void *src = 0;
try {
src = Genode::env()->rm_session()->attach(ds_cap());
} catch (...) { }
void *dst = 0;
try {
dst = Genode::env()->rm_session()->attach(dst_ds);
} catch (...) { }
if (src && dst)
memcpy(dst, src, size);
if (src) Genode::env()->rm_session()->detach(src);
if (dst) Genode::env()->rm_session()->detach(dst);
if (!src || !dst) {
Ram_session_client(ram).free(dst_ds);
return Dataspace_capability();
}
return dst_ds;
}
void poke(addr_t dst_offset, void const *src, size_t len)
{
if ((dst_offset >= size()) || (dst_offset + len > size())) {
PERR("illegal attemt to write beyond dataspace boundary");
return;
}
char *dst = 0;
try {
dst = Genode::env()->rm_session()->attach(ds_cap());
} catch (...) { }
if (src && dst)
memcpy(dst + dst_offset, src, len);
if (dst) Genode::env()->rm_session()->detach(dst);
}
};
class Ram_session_component : public Rpc_object<Ram_session>,
public Dataspace_destroyer
{
private:
List<Ram_dataspace_info> _list;
/*
* Track the RAM resources accumulated via RAM session allocations.
*
* XXX not used yet
*/
size_t _used_quota;
Dataspace_registry &_registry;
public:
/**
* Constructor
*/
Ram_session_component(Dataspace_registry &registry)
: _used_quota(0), _registry(registry) { }
/**
* Destructor
*/
~Ram_session_component()
{
Ram_dataspace_info *info = 0;
while ((info = _list.first()))
free(static_cap_cast<Ram_dataspace>(info->ds_cap()));
}
/***********************************
** Dataspace_destroyer interface **
***********************************/
/*
* XXX not used yet
*/
void destroy(Dataspace_capability ds)
{
free(static_cap_cast<Ram_dataspace>(ds));
}
/***************************
** Ram_session interface **
***************************/
Ram_dataspace_capability alloc(size_t size)
{
Ram_dataspace_capability ds_cap = env()->ram_session()->alloc(size);
Ram_dataspace_info *ds_info = new (env()->heap())
Ram_dataspace_info(ds_cap, *this);
_used_quota += ds_info->size();
_registry.insert(ds_info);
_list.insert(ds_info);
return ds_cap;
}
void free(Ram_dataspace_capability ds_cap)
{
Ram_dataspace_info *ds_info =
dynamic_cast<Ram_dataspace_info *>(_registry.lookup_info(ds_cap));
if (!ds_info) {
PERR("RAM free: dataspace lookup failed");
return;
}
_registry.remove(ds_info);
_list.remove(ds_info);
_used_quota -= ds_info->size();
env()->ram_session()->free(ds_cap);
Genode::destroy(env()->heap(), ds_info);
}
int ref_account(Ram_session_capability) { return 0; }
int transfer_quota(Ram_session_capability, size_t) { return 0; }
size_t quota() { return env()->ram_session()->quota(); }
size_t used() { return _used_quota; }
};
}
#endif /* _NOUX__RAM_SESSION_COMPONENT_H_ */

View File

@ -0,0 +1,265 @@
/*
* \brief RM session implementation used by Noux processes
* \author Norman Feske
* \date 2012-02-22
*
* The custom RM implementation is used for recording all RM regions attached
* to the region-manager session. Using the recorded information, the address-
* space layout can then be replayed onto a new process created via fork.
*/
/*
* Copyright (C) 2012 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _NOUX__RM_SESSION_COMPONENT_H_
#define _NOUX__RM_SESSION_COMPONENT_H_
/* Genode includes */
#include <rm_session/connection.h>
#include <base/rpc_server.h>
namespace Noux {
using namespace Genode;
class Rm_session_component : public Rpc_object<Rm_session>
{
private:
/**
* Record of an attached dataspace
*/
struct Region : List<Region>::Element
{
Dataspace_capability ds;
size_t size;
off_t offset;
addr_t local_addr;
Region(Dataspace_capability ds, size_t size,
off_t offset, addr_t local_addr)
:
ds(ds), size(size), offset(offset), local_addr(local_addr)
{ }
/**
* Return true if region contains specified address
*/
bool contains(addr_t addr) const
{
return (addr >= local_addr)
&& (addr < local_addr + size);
}
};
List<Region> _regions;
Region *_lookup_region_by_addr(addr_t local_addr)
{
Region *curr = _regions.first();
for (; curr; curr = curr->next()) {
if (curr->contains(local_addr))
return curr;
}
return 0;
}
/**
* Wrapped RM session at core
*/
Rm_connection _rm;
Dataspace_registry &_ds_registry;
public:
Rm_session_component(Dataspace_registry &ds_registry,
addr_t start = ~0UL, size_t size = 0)
:
_rm(start, size), _ds_registry(ds_registry)
{ }
~Rm_session_component()
{
Region *curr = 0;
for (; curr; curr = curr->next())
detach(curr->local_addr);
}
/**
* Replay attachments onto specified RM session
*
* \param dst_ram backing store used for allocating the
* the copies of RAM dataspaces
* \param ds_registry dataspace registry used for keeping track
* of newly created dataspaces
* \param ep entrypoint used to serve the RPC interface
* of forked managed dataspaces
*/
void replay(Ram_session_capability dst_ram,
Rm_session_capability dst_rm,
Dataspace_registry &ds_registry,
Rpc_entrypoint &ep)
{
/*
* XXX remove this
*/
struct Dummy_destroyer : Dataspace_destroyer
{
void destroy(Dataspace_capability) { }
};
static Dummy_destroyer dummy_destroyer;
for (Region *curr = _regions.first(); curr; curr = curr->next()) {
Dataspace_capability ds;
Dataspace_info *info = _ds_registry.lookup_info(curr->ds);
if (info) {
/*
* XXX Using 'this' as destroyer may be false, the
* destroyer should better correspond to dst_ram.
*/
ds = info->fork(dst_ram, dummy_destroyer, ds_registry, ep);
/*
* XXX We could detect dataspaces that are attached
* more than once. For now, we create a new fork
* for each attachment.
*/
} else {
/*
* If the dataspace is not a RAM dataspace, assume that
* it's a ROM dataspace.
*
* XXX Handle ROM dataspaces explicitly. For once, we
* need to make sure that they remain available
* until the child process exits even if the parent
* process exits earlier. Furthermore, we would
* like to detect unexpected dataspaces.
*/
ds = curr->ds;
PWRN("replay: unknown dataspace type, assume ROM");
}
if (!ds.valid()) {
PERR("replay: Error while forking dataspace");
continue;
}
Rm_session_client(dst_rm).attach(ds, curr->size,
curr->offset,
true,
curr->local_addr);
}
}
void poke(addr_t dst_addr, void const *src, size_t len)
{
Region *region = _lookup_region_by_addr(dst_addr);
if (!region) {
PERR("poke: no region at 0x%lx", dst_addr);
return;
}
/*
* Test if start and end address occupied by the object
* type refers to the same region.
*/
if (region != _lookup_region_by_addr(dst_addr + len - 1)) {
PERR("attempt to write beyond region boundary");
return;
}
Dataspace_info *info = _ds_registry.lookup_info(region->ds);
if (!info) {
PERR("attempt to write to unknown dataspace type");
for (;;);
return;
}
if (region->offset) {
PERR("poke: writing to region with offset is not supported");
return;
}
info->poke(dst_addr - region->local_addr, src, len);
}
/**************************
** RM session interface **
**************************/
Local_addr attach(Dataspace_capability ds,
size_t size = 0, off_t offset = 0,
bool use_local_addr = false,
Local_addr local_addr = (addr_t)0)
{
if (size == 0)
size = Dataspace_client(ds).size();
/*
* XXX look if we can identify the specified dataspace.
* Is it a dataspace allocated via 'Local_ram_session'?
*/
local_addr = _rm.attach(ds, size, offset,
use_local_addr, local_addr);
/*
* Record attachement for later replay (needed during
* fork)
*/
_regions.insert(new (Genode::env()->heap())
Region(ds, size, offset, local_addr));
return local_addr;
}
void detach(Local_addr local_addr)
{
_rm.detach(local_addr);
Region *region = _lookup_region_by_addr(local_addr);
if (!region) {
PWRN("Attempt to detach unknown region at 0x%p",
(void *)local_addr);
return;
}
_regions.remove(region);
destroy(Genode::env()->heap(), region);
}
Pager_capability add_client(Thread_capability thread)
{
return _rm.add_client(thread);
}
void fault_handler(Signal_context_capability handler)
{
return _rm.fault_handler(handler);
}
State state()
{
return _rm.state();
}
Dataspace_capability dataspace()
{
return _rm.dataspace();
}
};
}
#endif /* _NOUX__RM_SESSION_COMPONENT_H_ */