os: Refactor VirtIO::Queue implementation.

The key changes in this patch are:
* Buffer allocation is moved into a separate Buffer_pool helper. The
  implementation of the buffer allocation strategy does not change.
  The helper allocates a single RAM dataspace and splits it in multiple,
  equally sized chunks.
* Management of main descriptor ring is enacapsulated in Descriptor_ring
  helper class.
* Use separate RAM dataspaces for descriptor rings and buffers.
  Previously both of them were packed into a single dataspace. This
  might have been more RAM efficient, but IMO it made the code uglier and
  harder to understand.
* All of the VirtIO::Queue members are now initialized on the class member
  initializer list. This is possible due to previously listed changes.
* Since all VirtIO::Queue members are initalized on member initalizer
  list, some additional ones can be marked as const, ex _avail, _used ring
  pointers.
* Move descriptor writing code into a common method used by both
  write_data and write_data_read_reply members. This avoids some code
  duplication between those methods.
* Get rid of request_irq argument that most public VirtIO::Queue methods
  accept. None of the existing drivers use it and I doubt this will
  change any time soon.
* Use Genode namespace by default in Virtio.

This patch also fixes at least one bug that I discovered while working
on VirtIO block device driver. Namely, when chaining descriptors only the
first descriptor in the chain should be exposed in the available ring.

Issue #4347
This commit is contained in:
Piotr Tworek 2021-12-14 00:15:56 +01:00 committed by Norman Feske
parent aaf9e992da
commit 643747b912
2 changed files with 353 additions and 277 deletions

View File

@ -21,6 +21,8 @@
namespace Virtio
{
using namespace Genode;
template<typename, typename> class Queue;
struct Queue_default_traits;
struct Queue_description;
@ -32,22 +34,22 @@ struct Virtio::Queue_description
/**
* Physical address of the descriptor table.
*/
Genode::addr_t desc;
addr_t desc;
/**
* Physical address of the available descriptor ring.
*/
Genode::addr_t avail;
addr_t avail;
/**
* Physcical address of the used descriptor ring.
*/
Genode::addr_t used;
addr_t used;
/**
* The size of the descriptor table (number of elements).
*/
Genode::uint16_t size;
uint16_t size;
};
@ -76,8 +78,8 @@ class Virtio::Queue
/*
* Noncopyable
*/
Queue(Queue const &);
Queue &operator = (Queue const &);
Queue(Queue const &) = delete;
Queue &operator = (Queue const &) = delete;
protected:
@ -85,59 +87,147 @@ class Virtio::Queue
struct Descriptor
{
enum Flags : Genode::uint16_t
Descriptor(Descriptor const &) = delete;
Descriptor &operator = (Descriptor const &) = delete;
enum Flags : uint16_t
{
NEXT = 1,
WRITE = 2,
};
Genode::uint64_t addr;
Genode::uint32_t len;
Genode::uint16_t flags;
Genode::uint16_t next;
uint64_t addr;
uint32_t len;
uint16_t flags;
uint16_t next;
} __attribute__((packed));
struct Avail
{
enum Flags : Genode::uint16_t { NO_INTERRUPT = 1 };
Genode::uint16_t flags;
Genode::uint16_t idx;
Genode::uint16_t ring[];
/* Genode::uint16_t used_event; */
enum Flags : uint16_t { NO_INTERRUPT = 1 };
uint16_t flags;
uint16_t idx;
uint16_t ring[];
/* uint16_t used_event; */
} __attribute__((packed));
struct Used
{
Genode::uint16_t flags;
Genode::uint16_t idx;
uint16_t flags;
uint16_t idx;
struct {
Genode::uint32_t id;
Genode::uint32_t len;
uint32_t id;
uint32_t len;
} ring[];
/* Genode::uint16_t avail_event; */
/* uint16_t avail_event; */
} __attribute__((packed));
Genode::uint16_t const _queue_size;
Genode::uint16_t const _buffer_size;
Genode::Attached_ram_dataspace _ram_ds;
Descriptor *_desc_table = nullptr;
Avail volatile *_avail = nullptr;
Used volatile *_used = nullptr;
Genode::addr_t _buffer_phys_base = 0;
Genode::addr_t _buffer_local_base = 0;
Genode::uint16_t _last_used_idx = 0;
Queue_description _description { 0, 0, 0, 0 };
/*
* This helper splits one RAM dataspace into multiple, equally sized chunks. The
* number of such chunk is expected to be equal to the number of entries in VirtIO
* descriptor ring. Each chunk will serve as a buffer for single VirtIO descriptor.
*/
class Buffer_pool
{
private:
Buffer_pool(Buffer_pool const &) = delete;
Buffer_pool &operator = (Buffer_pool const &) = delete;
Attached_ram_dataspace _ram_ds;
uint16_t const _buffer_count;
uint16_t const _buffer_size;
addr_t const _phys_base;
uint8_t *_local_base;
static size_t _ds_size(uint16_t buffer_count, uint16_t buffer_size) {
return buffer_count * align_natural(buffer_size); }
static addr_t _phys_addr(Attached_ram_dataspace &ram_ds)
{
Dataspace_client client(ram_ds.cap());
return client.phys_addr();
}
public:
struct Buffer
{
uint8_t *local_addr;
addr_t phys_addr;
uint16_t size;
};
Buffer_pool(Ram_allocator &ram,
Region_map &rm,
uint16_t const buffer_count,
uint16_t const buffer_size)
: _ram_ds(ram, rm, _ds_size(buffer_count, buffer_size))
, _buffer_count(buffer_count)
, _buffer_size(buffer_size)
, _phys_base(_phys_addr(_ram_ds))
, _local_base(_ram_ds.local_addr<uint8_t>()) {}
const Buffer get(uint16_t descriptor_idx) const {
descriptor_idx %= _buffer_count;
return {
_local_base + descriptor_idx * align_natural(_buffer_size),
_phys_base + descriptor_idx * align_natural(_buffer_size),
_buffer_size
};
}
uint16_t buffer_size() const { return _buffer_size; }
};
class Descriptor_ring
{
private:
Descriptor_ring(Descriptor_ring const &) = delete;
Descriptor_ring &operator = (Descriptor_ring const &) = delete;
Descriptor * const _desc_table;
uint16_t const _size;
uint16_t _head = 0;
uint16_t _tail = 0;
public:
Descriptor_ring(uint8_t const *table, uint16_t ring_size)
: _desc_table((Descriptor *)table), _size(ring_size) { }
uint16_t reserve() { return _head++ % _size; }
void free_all() { _tail = _head; }
uint16_t available_capacity() const {
return (uint16_t)((_tail > _head) ? _tail - _head
: _size - _head + _tail) - 1; }
Descriptor& get(uint16_t const idx) const {
return _desc_table[idx % _size]; }
};
uint16_t const _queue_size;
Attached_ram_dataspace _ram_ds;
Buffer_pool _buffers;
Avail volatile * const _avail;
Used volatile * const _used;
Descriptor_ring _descriptors;
uint16_t _last_used_idx = 0;
Queue_description const _description;
/* As defined in section 2.4 of VIRTIO 1.0 specification. */
static Genode::size_t _desc_size(Genode::uint16_t queue_size) {
static size_t _desc_size(uint16_t queue_size) {
return 16 * queue_size; }
static Genode::size_t _avail_size(Genode::uint16_t queue_size) {
static size_t _avail_size(uint16_t queue_size) {
return 6 + 2 * queue_size; }
static Genode::size_t _used_size(Genode::uint16_t queue_size) {
static size_t _used_size(uint16_t queue_size) {
return 6 + 8 * queue_size; }
Genode::uint16_t _check_buffer_size(Genode::uint16_t buffer_size)
static uint16_t _check_buffer_size(uint16_t buffer_size)
{
/**
* Each buffer in the queue should be big enough to hold
@ -148,193 +238,197 @@ class Virtio::Queue
return buffer_size;
}
static Genode::size_t _ds_size(Genode::uint16_t queue_size,
Genode::uint16_t buffer_size)
static size_t _ds_size(uint16_t queue_size)
{
Genode::size_t size = _desc_size(queue_size) + _avail_size(queue_size);
size = Genode::align_natural(size);
size_t size = _desc_size(queue_size) + _avail_size(queue_size);
size = align_natural(size);
/* See section 2.4 of VirtIO 1.0 specification */
size += _used_size(queue_size);
size = Genode::align_natural(size);
return size + (queue_size * Genode::align_natural(buffer_size));
return align_natural(size);
}
void _init_tables()
static Queue_description _init_description(
uint16_t queue_size,
Ram_dataspace_capability cap)
{
using namespace Genode;
Dataspace_client ram_ds_client(cap);
Dataspace_client ram_ds_client(_ram_ds.cap());
uint8_t const *base_phys = (uint8_t *)ram_ds_client.phys_addr();
size_t const avail_offset = _desc_size(queue_size);
size_t const used_offset = align_natural(avail_offset + _avail_size(queue_size));
uint8_t const *base_phys = (uint8_t *)ram_ds_client.phys_addr();
uint8_t const *base_local = _ram_ds.local_addr<uint8_t>();
size_t const avail_offset = _desc_size(_queue_size);
size_t const used_offset = align_natural(avail_offset + _avail_size(_queue_size));
size_t const buff_offset = align_natural(used_offset + _used_size(_queue_size));
_desc_table = (Descriptor *)base_local;
_avail = (Avail *)(base_local + avail_offset);
_used = (Used *)(base_local + used_offset);
_buffer_local_base = (addr_t)(base_local + buff_offset);
_buffer_phys_base = (addr_t)(base_phys + buff_offset);
_description.desc = (addr_t)base_phys;
_description.avail = (addr_t)(base_phys + avail_offset);
_description.used = (addr_t)(base_phys + used_offset);
_description.size = _queue_size;
return {
(addr_t)base_phys,
(addr_t)(base_phys + avail_offset),
(addr_t)(base_phys + used_offset),
queue_size,
};
}
static Avail *_init_avail(uint8_t *base_addr, uint16_t queue_size) {
return (Avail *)(base_addr + _desc_size(queue_size)); }
static Used *_init_used(uint8_t *base_addr, uint16_t queue_size) {
return (Used *)(base_addr + align_natural(_desc_size(queue_size) + _avail_size(queue_size))); }
void _fill_descriptor_table()
{
const Genode::uint16_t flags =
TRAITS::device_write_only ? Descriptor::Flags::WRITE : 0;
if (!TRAITS::device_write_only)
return;
/*
* When the queue is only writeable by the VirtIO device by we need to push
* all the descriptors to the available ring. The device will then use them
* whenever it wants to send us some data.
*/
while (_descriptors.available_capacity() > 0) {
auto const idx = _descriptors.reserve();
auto &desc = _descriptors.get(idx);
auto const buffer = _buffers.get(idx);
desc.addr = buffer.phys_addr;
desc.len = buffer.size;
desc.flags = Descriptor::Flags::WRITE;
desc.next = 0;
for (Genode::uint16_t idx = 0; idx < _queue_size; idx++) {
_desc_table[idx] = Descriptor {
_buffer_phys_base + idx * Genode::align_natural(_buffer_size),
_buffer_size, flags, 0 };
_avail->ring[idx] = idx;
}
/* Expose all available buffers to the device. */
if (TRAITS::device_write_only) {
_avail->flags = 0;
_avail->idx = _queue_size;
}
_avail->flags = 0;
_avail->idx = _queue_size;
}
Genode::uint16_t _avail_capacity() const
{
auto const used_idx = _used->idx;
auto const avail_idx = _avail->idx;
if (avail_idx >= used_idx) {
return (Genode::uint16_t)(_queue_size - avail_idx + used_idx);
} else {
return used_idx - avail_idx;
}
}
struct Write_result {
uint16_t first_descriptor_idx;
uint16_t last_descriptor_idx;
};
void *_buffer_local_addr(Descriptor const *d) {
return (void *)(_buffer_local_base + (d->addr - _buffer_phys_base)); }
template <typename REPLY_TYPE, typename REPLY_FN>
bool _read_response_data(REPLY_FN const &reply_fn)
/*
* Write header and data (if data_size > 0) to a descirptor, or chain of descriptors.
* Returns the indexes of first and last descriptor in the chain. The caller must
* ensure there are enough descriptors to service the request.
*/
Write_result _write_data(Header_type const &header,
char const *data,
size_t data_size)
{
static_assert(TRAITS::has_data_payload);
static_assert(!TRAITS::device_write_only);
static_assert(TRAITS::has_data_payload);
if (!has_used_buffers())
return false;
auto const first_desc_idx = _descriptors.reserve();
auto &desc = _descriptors.get(first_desc_idx);
auto buffer = _buffers.get(first_desc_idx);
Genode::uint16_t const idx = _last_used_idx % _queue_size;
auto const *desc = &_desc_table[idx];
char const *desc_data = (char *)_buffer_local_addr(desc);
desc.addr = buffer.phys_addr;
if (!(desc->flags & Descriptor::Flags::NEXT))
return false;
memcpy(buffer.local_addr, (void *)&header, sizeof(header));
desc.len = sizeof(header);
if (desc->next >= _queue_size)
return false;
desc = &_desc_table[desc->next];
desc_data = (char *)_buffer_local_addr(desc);
if (reply_fn(*reinterpret_cast<REPLY_TYPE const *>(desc_data))) {
_last_used_idx++;
return true;
if (data_size > 0) {
/*
* Try to fit payload data into descriptor which holds the header.
*
* The size of the buffer is uint16_t so the result should also fit in the same quantity.
* The size of the header can never be larger than the size of the buffer, see
* _check_buffer_size function.
*/
auto const len = (uint16_t)min((size_t)buffer.size - sizeof(header), data_size);
memcpy(buffer.local_addr + sizeof(header), data, len);
desc.len += len;
}
return false;
size_t remaining_data_len = data_size + sizeof(header) - desc.len;
if (remaining_data_len == 0) {
/*
* There is no more data left to send, everything fit into the first descriptor.
*/
desc.flags = 0;
desc.next = 0;
return { first_desc_idx, first_desc_idx };
}
/*
* Some data did not fit into the first descriptor. Chain additional ones.
*/
auto chained_idx = _descriptors.reserve();
desc.flags = Descriptor::Flags::NEXT;
desc.next = chained_idx % _queue_size;
size_t data_offset = desc.len - sizeof(header);
do {
auto &chained_desc = _descriptors.get(chained_idx);
buffer = _buffers.get(chained_idx);
/*
* The size of the buffer is specified in uint16_t so the result should also
* fit in the same quantity.
*/
auto const write_len = (uint16_t)min((size_t)buffer.size, remaining_data_len);
memcpy(buffer.local_addr, data + data_offset, write_len);
chained_desc.addr = buffer.phys_addr;
chained_desc.len = write_len;
remaining_data_len -= write_len;
data_offset += write_len;
if (remaining_data_len > 0) {
/*
* There is still more data to send, chain additional descriptor.
*/
chained_idx = _descriptors.reserve();
chained_desc.flags = Descriptor::Flags::NEXT;
chained_desc.next = chained_idx;
} else {
/*
* This was the last descriptor in the chain.
*/
chained_desc.flags = 0;
chained_desc.next = 0;
}
} while (remaining_data_len > 0);
return { first_desc_idx, chained_idx};
}
public:
struct Invalid_buffer_size : Genode::Exception { };
struct Invalid_buffer_size : Exception { };
Queue_description const description() const { return _description; }
bool has_used_buffers() const { return _last_used_idx != _used->idx; }
void ack_all_transfers() { _last_used_idx = _used->idx;}
void ack_all_transfers()
{
static_assert(!TRAITS::device_write_only);
Genode::size_t size() const { return _ds_size(_queue_size, _buffer_size); }
_last_used_idx = _used->idx;
if (!TRAITS::device_write_only)
_descriptors.free_all();
}
bool write_data(Header_type const &header,
char const *data,
Genode::size_t data_size,
bool request_irq = true)
size_t data_size)
{
static_assert(!TRAITS::device_write_only);
static_assert(TRAITS::has_data_payload);
Genode::size_t const req_desc_count = 1 + (sizeof(header) + data_size) / _buffer_size;
if (req_desc_count > _avail_capacity())
int const req_desc_count = 1 + (sizeof(header) + data_size) / _buffers.buffer_size();
if (req_desc_count > _descriptors.available_capacity())
return false;
Genode::uint16_t avail_idx = _avail->idx;
auto *desc = &_desc_table[avail_idx % _queue_size];
auto const write_result = _write_data(header, data, data_size);
Genode::memcpy(_buffer_local_addr(desc), (void *)&header, sizeof(header));
desc->len = sizeof(header);
Genode::size_t len = Genode::min(_buffer_size - sizeof(header), data_size);
Genode::memcpy((char *)_buffer_local_addr(desc) + desc->len, data, len);
desc->len += len;
len = data_size + sizeof(header) - desc->len;
avail_idx++;
if (len == 0) {
desc->flags = 0;
desc->next = 0;
_avail->flags = request_irq ? 0 : Avail::Flags::NO_INTERRUPT;
_avail->idx = avail_idx;
return true;
}
desc->flags = Descriptor::Flags::NEXT;
desc->next = avail_idx % _queue_size;
Genode::size_t data_offset = desc->len;
do {
desc = &_desc_table[avail_idx % _queue_size];
avail_idx++;
Genode::size_t write_len = Genode::min(_buffer_size, len);
Genode::memcpy((char *)_buffer_local_addr(desc), data + data_offset, write_len);
desc->len = write_len;
desc->flags = len > 0 ? Descriptor::Flags::NEXT : 0;
desc->next = len > 0 ? (avail_idx % _queue_size) : 0;
len -= write_len;
data_offset += desc->len;
} while (len > 0);
_avail->flags = request_irq ? 0 : Avail::Flags::NO_INTERRUPT;
_avail->idx = avail_idx;
return true;
}
bool write_data(Header_type const &header, bool request_irq = true)
{
static_assert(!TRAITS::device_write_only);
static_assert(!TRAITS::has_data_payload);
if (_avail_capacity() == 0)
return false;
Genode::uint16_t avail_idx = _avail->idx;
auto *desc = &_desc_table[avail_idx % _queue_size];
Genode::memcpy(_buffer_local_addr(desc), (void *)&header, sizeof(header));
desc->len = sizeof(header);
desc->flags = 0;
desc->next = 0;
_avail->flags = request_irq ? 0 : Avail::Flags::NO_INTERRUPT;
_avail->idx = ++avail_idx;
/*
* Only the first descritor in the chain needs to be pushed to the available ring.
*/
_avail->ring[_avail->idx % _queue_size] = write_result.first_descriptor_idx;
_avail->idx += 1;
_avail->flags = Avail::Flags::NO_INTERRUPT;
return true;
}
@ -342,24 +436,23 @@ class Virtio::Queue
template <typename FN>
void read_data(FN const &fn)
{
static_assert(TRAITS::has_data_payload);
if (!has_used_buffers())
return;
Genode::uint16_t const idx = _last_used_idx % _queue_size;
Genode::uint32_t const len = _used->ring[idx].len;
auto const used_idx = _last_used_idx % _queue_size;
auto const buffer_idx = (uint16_t)(_used->ring[used_idx].id % _queue_size);
auto const len = _used->ring[used_idx].len;
auto const *desc = &_desc_table[idx];
char const *desc_data = (char *)_buffer_local_addr(desc);
auto const buffer = _buffers.get(buffer_idx);
char const *desc_data = (char *)buffer.local_addr;
Header_type const &header = *((Header_type *)(desc_data));
char const *data = desc_data + sizeof(Header_type);
Genode::size_t const data_size = len - sizeof(Header_type);
size_t const data_size = len - sizeof(Header_type);
if (fn(header, data, data_size)) {
_last_used_idx++;
_avail->idx = _avail->idx + 1;
}
_last_used_idx += 1;
_avail->idx = _last_used_idx - 1;
fn(header, data, data_size);
}
Header_type read_data()
@ -367,141 +460,124 @@ class Virtio::Queue
static_assert(!TRAITS::has_data_payload);
if (!has_used_buffers())
return Header_type();
return Header_type{};
Genode::uint16_t const idx = _last_used_idx % _queue_size;
auto const used_idx = _last_used_idx % _queue_size;
auto const buffer_idx = (uint16_t)(_used->ring[used_idx].id % _queue_size);
auto const *desc = &_desc_table[idx];
char const *desc_data = (char *)_buffer_local_addr(desc);
Header_type const &header = *((Header_type *)(desc_data));
auto const buffer = _buffers.get(buffer_idx);
char const *desc_data = (char *)buffer.local_addr;
_last_used_idx++;
_avail->idx = _avail->idx + 1;
_last_used_idx += 1;
_avail->idx = _last_used_idx - 1;
return header;
return *((Header_type *)(desc_data));
}
template <typename REPLY_TYPE, typename WAIT_REPLY_FN, typename REPLY_FN>
bool write_data_read_reply(Header_type const &header,
char const *data,
Genode::size_t data_size,
size_t data_size,
WAIT_REPLY_FN const &wait_for_reply,
REPLY_FN const &read_reply,
bool request_irq = false)
REPLY_FN const &read_reply)
{
static_assert(!TRAITS::device_write_only);
static_assert(TRAITS::has_data_payload);
Genode::size_t const req_desc_count = 1 + (sizeof(header) + data_size) / _buffer_size;
if (req_desc_count > _avail_capacity())
return false;
/*
* This restriction could be lifted by chaining multiple descriptors to receive
* the reply. Its probably better however to just ensure buffers are large enough
* when configuring the queue instead of adding more complexity to this function.
*/
if (sizeof(REPLY_TYPE) > _buffer_size)
if (sizeof(REPLY_TYPE) > _buffers.buffer_size())
return false;
Genode::uint16_t avail_idx = _avail->idx;
auto *desc = &_desc_table[avail_idx % _queue_size];
avail_idx++;
/*
* The value of 2 is not a mistake. One additional desciptor is needed for
* receiving the response.
*/
auto const req_desc_count = 2 + (sizeof(header) + data_size) / _buffers.buffer_size();
if (req_desc_count > _descriptors.available_capacity())
return false;
Genode::memcpy(_buffer_local_addr(desc), (void *)&header, sizeof(header));
desc->len = sizeof(header);
Genode::size_t len = 0;
if (data != nullptr && data_size > 0) {
len = Genode::min(_buffer_size - sizeof(header), data_size);
Genode::memcpy((char *)_buffer_local_addr(desc) + desc->len, data, len);
desc->len += (Genode::uint32_t)len;
len = data_size + sizeof(header) - desc->len;
}
if (len == 0) {
desc->flags = 0;
desc->next = 0;
} else {
desc->flags = Descriptor::Flags::NEXT;
desc->next = avail_idx % _queue_size;
Genode::size_t data_offset = desc->len;
do {
desc = &_desc_table[avail_idx % _queue_size];
avail_idx++;
Genode::size_t write_len = Genode::min((Genode::size_t)_buffer_size, len);
Genode::memcpy((char *)_buffer_local_addr(desc),
data + data_offset, write_len);
desc->len = (Genode::uint32_t)write_len;
desc->flags = len > 0 ? Descriptor::Flags::NEXT : 0;
desc->next = len > 0 ? (avail_idx % _queue_size) : 0;
len -= write_len;
data_offset += desc->len;
} while (len > 0);
}
auto const write_result = _write_data(header, data, data_size);
auto &last_write_desc = _descriptors.get(write_result.last_descriptor_idx);
/*
* Chain additional descriptor for receiving response.
*/
desc->flags = Descriptor::Flags::NEXT;
desc->next = avail_idx % _queue_size;
auto const reply_desc_idx = _descriptors.reserve();
auto &reply_desc = _descriptors.get(reply_desc_idx);
auto reply_buffer = _buffers.get(reply_desc_idx);
desc = &_desc_table[avail_idx % _queue_size];
desc->len = sizeof(REPLY_TYPE);
desc->flags = Descriptor::Flags::WRITE;
desc->next = 0;
last_write_desc.flags = Descriptor::Flags::NEXT;
last_write_desc.next = reply_desc_idx;
_avail->flags = request_irq ? 0 : Avail::Flags::NO_INTERRUPT;
_avail->idx = avail_idx;
reply_desc.addr = reply_buffer.phys_addr;
reply_desc.len = sizeof(REPLY_TYPE);
reply_desc.flags = Descriptor::Flags::WRITE;
reply_desc.next = 0;
/*
* Only the first descritor in the chain needs to be pushed to the available ring.
*/
_avail->ring[_avail->idx % _queue_size] = write_result.first_descriptor_idx;
_avail->idx += 1;
_avail->flags = Avail::Flags::NO_INTERRUPT;
wait_for_reply();
/* Make sure wait call did what it was supposed to do. */
/*
* Make sure wait call did what it was supposed to do.
*/
if (!has_used_buffers())
return false;
return _read_response_data<REPLY_TYPE>(read_reply);
/*
* We need to ACK the transfers regardless if the user provider read_reply function
* likes the reply or not. From our POV the transfer was succesful. Its irrelevant if
* the user likes the response, or not.
*/
ack_all_transfers();
return read_reply(*reinterpret_cast<REPLY_TYPE const *>(reply_buffer.local_addr));
}
template <typename REPLY_TYPE, typename WAIT_REPLY_FN, typename REPLY_FN>
bool write_data_read_reply(Header_type const &header,
WAIT_REPLY_FN const &wait_for_reply,
REPLY_FN const &read_reply,
bool request_irq = false)
REPLY_FN const &read_reply)
{
return write_data_read_reply<REPLY_TYPE>(
header, nullptr, 0, wait_for_reply, read_reply, request_irq);
header, nullptr, 0, wait_for_reply, read_reply);
}
void print(Genode::Output& output) const
void print(Output& output) const
{
Genode::print(output, "avail idx: ");
Genode::print(output, _avail->idx);
Genode::print(output, ", used idx = ");
Genode::print(output, _used->idx);
Genode::print(output, ", last seen used idx = ");
Genode::print(output, _last_used_idx);
Genode::print(output, ", capacity = ");
Genode::print(output, _avail_capacity());
Genode::print(output, ", size = ");
Genode::print(output, _queue_size);
print(output, "avail idx: ");
print(output, _avail->idx % _queue_size);
print(output, ", used idx = ");
print(output, _used->idx);
print(output, ", last seen used idx = ");
print(output, _last_used_idx);
print(output, ", capacity = ");
print(output, _descriptors.available_capacity());
print(output, ", size = ");
print(output, _queue_size);
}
Queue(Genode::Ram_allocator &ram,
Genode::Region_map &rm,
Genode::uint16_t queue_size,
Genode::uint16_t buffer_size)
Queue(Ram_allocator &ram,
Region_map &rm,
uint16_t queue_size,
uint16_t buffer_size)
: _queue_size(queue_size),
_buffer_size(_check_buffer_size(buffer_size)),
_ram_ds(ram, rm, _ds_size(queue_size, buffer_size), Genode::UNCACHED)
_ram_ds(ram, rm, _ds_size(queue_size), UNCACHED),
_buffers(ram, rm, queue_size, _check_buffer_size(buffer_size)),
_avail(_init_avail(_ram_ds.local_addr<uint8_t>(), queue_size)),
_used(_init_used(_ram_ds.local_addr<uint8_t>(), queue_size)),
_descriptors(_ram_ds.local_addr<uint8_t>(), queue_size),
_description(_init_description(queue_size, _ram_ds.cap()))
{
_init_tables();
_fill_descriptor_table();
}
};

View File

@ -345,10 +345,10 @@ class Virtio_nic::Device : Noncopyable
}
bool tx_vq_write_pkt(char const *pkt_base,
Genode::size_t pkt_size)
Genode::size_t pkt_size)
{
Virtio_net_header hdr;
return _tx_vq.write_data(hdr, pkt_base, pkt_size, false);
return _tx_vq.write_data(hdr, pkt_base, pkt_size);
}
template <typename RECEIVE_PKT>