Clean up base-library structure

This patch moves the base library from src/base to src/lib/base,
flattens the library-internal directory structure, and moves the common
parts of the library-description files to base/lib/mk/base.inc and
base/lib/mk/base-common.inc.

Furthermore, the patch fixes a few cosmetic issues (whitespace and
comments only) that I encountered while browsing the result.

Fixes #1952
This commit is contained in:
Norman Feske
2016-04-29 13:23:19 +02:00
parent 52cc50174f
commit 40a5af42eb
134 changed files with 183 additions and 458 deletions

View File

@ -0,0 +1,114 @@
/*
* \brief Implementation of process creation for Linux
* \author Norman Feske
* \date 2006-07-06
*/
/*
* Copyright (C) 2006-2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
/* Genode includes */
#include <base/env.h>
#include <base/child.h>
#include <base/printf.h>
#include <linux_native_pd/client.h>
/* base-internal includes */
#include <linux_syscalls.h>
#include <base/internal/elf.h>
using namespace Genode;
/*
* Register main thread at core
*
* At this point in time, we do not yet know the TID and PID of the new
* thread. Those information will be provided to core by the constructor of
* the 'Platform_env' of the new process.
*/
Child::Process::Initial_thread::Initial_thread(Cpu_session &cpu,
Pd_session_capability pd,
char const *name)
:
cpu(cpu),
cap(cpu.create_thread(pd, Cpu_session::DEFAULT_WEIGHT, name))
{ }
Child::Process::Initial_thread::~Initial_thread() { }
/*
* On Linux, the ELF loading is performed by the kernel
*/
Child::Process::Loaded_executable::Loaded_executable(Dataspace_capability,
Dataspace_capability,
Ram_session &,
Region_map &,
Region_map &,
Parent_capability) { }
Child::Process::Process(Dataspace_capability elf_ds,
Dataspace_capability ldso_ds,
Pd_session_capability pd_cap,
Pd_session &pd,
Ram_session &ram,
Cpu_session &cpu,
Region_map &local_rm,
Region_map &remote_rm,
Parent_capability parent_cap,
char const *name)
:
initial_thread(cpu, pd_cap, name),
loaded_executable(elf_ds, ldso_ds, ram, local_rm, remote_rm, parent_cap)
{
/* skip loading when called during fork */
if (!elf_ds.valid())
return;
/* attach ELF locally */
addr_t elf_addr;
try { elf_addr = local_rm.attach(elf_ds); }
catch (Region_map::Attach_failed) {
PERR("local attach of ELF executable failed"); throw; }
/* setup ELF object and read program entry pointer */
Elf_binary elf(elf_addr);
if (!elf.valid())
throw Invalid_executable();
bool const dynamically_linked = elf.is_dynamically_linked();
local_rm.detach(elf_addr);
/*
* If the specified executable is a dynamically linked program, we load
* the dynamic linker instead.
*/
if (dynamically_linked) {
if (!ldso_ds.valid()) {
PERR("attempt to start dynamic executable without dynamic linker");
throw Missing_dynamic_linker();
}
elf_ds = ldso_ds;
}
pd.assign_parent(parent_cap);
Linux_native_pd_client
lx_pd(static_cap_cast<Linux_native_pd>(pd.native_pd()));
lx_pd.start(elf_ds);
}
Child::Process::~Process() { }

View File

@ -0,0 +1,21 @@
/*
* \brief Implementation of the cache operations
* \author Christian Prochaska
* \date 2014-05-13
*/
/*
* Copyright (C) 2014 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#include <linux_syscalls.h>
#include <cpu/cache.h>
void Genode::cache_coherent(Genode::addr_t addr, Genode::size_t size)
{
lx_syscall(__ARM_NR_cacheflush, addr, addr + size, 0);
}

View File

@ -0,0 +1,57 @@
/*
* \brief Linux-specific debug utilities
* \author Norman Feske
* \date 2009-05-16
*/
/*
* Copyright (C) 2009-2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
/*
* With the enabled 'DEBUG' flag, status information can be printed directly
* via a Linux system call by using the 'raw_write_str' function. This output
* bypasses the Genode 'LOG' mechanism, which is useful for debugging low-level
* code such as a libC back-end.
*/
#define DEBUG 1
#if DEBUG
#include <linux_syscalls.h>
#endif /* DEBUG */
/**
* Write function targeting directly the Linux system call layer and bypassing
* any Genode code.
*/
extern "C" int raw_write_str(const char *str)
{
#if DEBUG
unsigned len = 0;
for (; str[len] != 0; len++);
lx_syscall(SYS_write, (int)1, str, len);
return len;
#endif /* DEBUG */
}
/**
* Debug function waiting until the user presses return
*
* This function is there to delay the execution of a back-end function such
* that we have time to attack the GNU debugger to the running process. Once
* attached, we can continue execution and use 'gdb' for debugging. In the
* normal mode of operation, this function is never used.
*/
extern "C" void wait_for_continue(void)
{
#if DEBUG
char buf[16];
lx_syscall(SYS_read, (int)0, buf, sizeof(buf));
#endif /* DEBUG */
}

View File

@ -0,0 +1,24 @@
/*
* \brief Environment reinitialization
* \author Norman Feske
* \date 2016-04-29
*
* Support functions for implementing fork on Noux, which is not supported on
* Linux.
*/
/*
* Copyright (C) 2016 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
/* base-internal includes */
#include <base/internal/platform_env.h>
void Genode::Platform_env_base::reinit(Native_capability::Dst, long) { }
void Genode::Platform_env_base::reinit_main_thread(Capability<Region_map> &) { }

View File

@ -0,0 +1,521 @@
/*
* \brief Socket-based IPC implementation for Linux
* \author Norman Feske
* \author Christian Helmuth
* \date 2011-10-11
*/
/*
* Copyright (C) 2011-2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
/* Genode includes */
#include <base/ipc.h>
#include <base/thread.h>
#include <base/blocking.h>
#include <base/env.h>
#include <linux_native_cpu/linux_native_cpu.h>
/* base-internal includes */
#include <base/internal/socket_descriptor_registry.h>
#include <base/internal/native_thread.h>
#include <base/internal/ipc_server.h>
#include <base/internal/server_socket_pair.h>
/* Linux includes */
#include <linux_syscalls.h>
#include <sys/un.h>
#include <sys/socket.h>
using namespace Genode;
/*
* The request message layout is:
*
* long local_name;
* ...call arguments, starting with the opcode...
*
* Response messages look like this:
*
* long exception code
* ...call results...
*
* First data word of message, used to transfer the local name of the invoked
* object (when a client calls a server) or the exception code (when the server
* replies). This data word is never fetched from memory but transferred via
* the first short-IPC register. The 'protocol_word' is needed as a spacer
* between the header fields define above and the regular message payload..
*/
struct Protocol_header
{
/* badge of invoked object (on call) / exception code (on reply) */
unsigned long protocol_word;
size_t num_caps;
/* badges of the transferred capability arguments */
unsigned long badges[Msgbuf_base::MAX_CAPS_PER_MSG];
enum { INVALID_BADGE = ~0UL };
void *msg_start() { return &protocol_word; }
};
/******************************
** File-descriptor registry **
******************************/
Genode::Ep_socket_descriptor_registry *Genode::ep_sd_registry()
{
static Genode::Ep_socket_descriptor_registry registry;
return &registry;
}
/********************************************
** Communication over Unix-domain sockets **
********************************************/
enum {
LX_EINTR = 4,
LX_ECONNREFUSED = 111
};
/**
* Utility: Return thread ID to which the given socket is directed to
*
* \return -1 if the socket is pointing to a valid entrypoint
*/
static int lookup_tid_by_client_socket(int sd)
{
/*
* Synchronize calls so that the large 'sockaddr_un' can be allocated
* in the BSS rather than the stack.
*/
static Lock lock;
Lock::Guard guard(lock);
static sockaddr_un name;
socklen_t name_len = sizeof(name);
int ret = lx_getpeername(sd, (sockaddr *)&name, &name_len);
if (ret < 0)
return -1;
struct Prefix_len
{
typedef Genode::size_t size_t;
size_t const len;
static int _init_len(char const *s)
{
char const * const pattern = "/ep-";
static size_t const pattern_len = Genode::strlen(pattern);
for (size_t i = 0; Genode::strlen(s + i) >= pattern_len; i++)
if (Genode::strcmp(s + i, pattern, pattern_len) == 0)
return i + pattern_len;
struct Unexpected_rpath_prefix { };
throw Unexpected_rpath_prefix();
}
Prefix_len(char const *s) : len(_init_len(s)) { }
};
/*
* The name of the Unix-domain socket has the form <rpath>-<uid>/ep-<tid>.
* We are only interested in the <tid> part. Hence, we determine the length
* of the <rpath>-<uid>/ep- portion only once and keep it in a static
* variable.
*/
static Prefix_len prefix_len(name.sun_path);
unsigned tid = 0;
if (Genode::ascii_to(name.sun_path + prefix_len.len, tid) == 0) {
PRAW("Error: could not parse tid number");
return -1;
}
return tid;
}
namespace {
/**
* Message object encapsulating data for sendmsg/recvmsg
*/
struct Message
{
public:
enum { MAX_SDS_PER_MSG = Genode::Msgbuf_base::MAX_CAPS_PER_MSG + 1 };
private:
typedef Genode::size_t size_t;
msghdr _msg;
sockaddr_un _addr;
iovec _iovec;
char _cmsg_buf[CMSG_SPACE(MAX_SDS_PER_MSG*sizeof(int))];
unsigned _num_sds;
public:
Message(void *buffer, size_t buffer_len) : _num_sds(0)
{
Genode::memset(&_msg, 0, sizeof(_msg));
/* initialize control message */
struct cmsghdr *cmsg;
_msg.msg_control = _cmsg_buf;
_msg.msg_controllen = sizeof(_cmsg_buf); /* buffer space available */
_msg.msg_flags |= MSG_CMSG_CLOEXEC;
cmsg = CMSG_FIRSTHDR(&_msg);
cmsg->cmsg_len = CMSG_LEN(0);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
_msg.msg_controllen = cmsg->cmsg_len; /* actual cmsg length */
/* initialize iovec */
_msg.msg_iov = &_iovec;
_msg.msg_iovlen = 1;
_iovec.iov_base = buffer;
_iovec.iov_len = buffer_len;
}
msghdr * msg() { return &_msg; }
void marshal_socket(int sd)
{
*((int *)CMSG_DATA((cmsghdr *)_cmsg_buf) + _num_sds) = sd;
_num_sds++;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&_msg);
cmsg->cmsg_len = CMSG_LEN(_num_sds*sizeof(int));
_msg.msg_controllen = cmsg->cmsg_len; /* actual cmsg length */
}
void accept_sockets(int num_sds)
{
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&_msg);
cmsg->cmsg_len = CMSG_LEN(num_sds*sizeof(int));
_msg.msg_controllen = cmsg->cmsg_len; /* actual cmsg length */
}
int socket_at_index(int index) const
{
return *((int *)CMSG_DATA((cmsghdr *)_cmsg_buf) + index);
}
unsigned num_sockets() const
{
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&_msg);
if (!cmsg)
return 0;
return (cmsg->cmsg_len - CMSG_ALIGN(sizeof(cmsghdr)))/sizeof(int);
}
};
} /* unnamed namespace */
static void insert_sds_into_message(Message &msg,
Protocol_header &header,
Genode::Msgbuf_base &snd_msgbuf)
{
for (unsigned i = 0; i < snd_msgbuf.used_caps(); i++) {
Native_capability const &cap = snd_msgbuf.cap(i);
if (cap.valid()) {
msg.marshal_socket(cap.dst().socket);
header.badges[i] = cap.local_name();
} else {
header.badges[i] = Protocol_header::INVALID_BADGE;
}
}
header.num_caps = snd_msgbuf.used_caps();
}
/**
* Utility: Extract socket desriptors from SCM message into 'Genode::Msgbuf'
*/
static void extract_sds_from_message(unsigned start_index,
Message const &msg,
Protocol_header const &header,
Genode::Msgbuf_base &buf)
{
unsigned sd_cnt = 0;
for (unsigned i = 0; i < min(header.num_caps, Msgbuf_base::MAX_CAPS_PER_MSG); i++) {
unsigned long const badge = header.badges[i];
/* an invalid capabity was transferred */
if (badge == Protocol_header::INVALID_BADGE) {
buf.insert(Native_capability());
continue;
}
int const sd = msg.socket_at_index(start_index + sd_cnt++);
int const id = lookup_tid_by_client_socket(sd);
int const associated_sd = Genode::ep_sd_registry()->try_associate(sd, id);
buf.insert(Native_capability(Cap_dst_policy::Dst(associated_sd), badge));
if ((associated_sd >= 0) && (associated_sd != sd)) {
/*
* The association already existed under a different name, use
* already associated socket descriptor and and drop 'sd'.
*/
lx_close(sd);
}
}
}
/**
* Send reply to client
*/
static inline void lx_reply(int reply_socket, Rpc_exception_code exception_code,
Genode::Msgbuf_base &snd_msgbuf)
{
Protocol_header &header = snd_msgbuf.header<Protocol_header>();
header.protocol_word = exception_code.value;
Message msg(header.msg_start(), sizeof(Protocol_header) + snd_msgbuf.data_size());
/* marshall capabilities to be transferred to the client */
insert_sds_into_message(msg, header, snd_msgbuf);
int const ret = lx_sendmsg(reply_socket, msg.msg(), 0);
/* ignore reply send error caused by disappearing client */
if (ret >= 0 || ret == -LX_ECONNREFUSED) {
lx_close(reply_socket);
return;
}
if (ret < 0)
PRAW("[%d] lx_sendmsg failed with %d in lx_reply() reply_socket=%d", lx_gettid(), ret, reply_socket);
}
/****************
** IPC client **
****************/
Rpc_exception_code Genode::ipc_call(Native_capability dst,
Msgbuf_base &snd_msgbuf, Msgbuf_base &rcv_msgbuf,
size_t)
{
Protocol_header &snd_header = snd_msgbuf.header<Protocol_header>();
snd_header.protocol_word = dst.local_name();
Message snd_msg(snd_header.msg_start(),
sizeof(Protocol_header) + snd_msgbuf.data_size());
/*
* Create reply channel
*
* The reply channel will be closed when leaving the scope of 'lx_call'.
*/
struct Reply_channel
{
enum { LOCAL_SOCKET = 0, REMOTE_SOCKET = 1 };
int sd[2];
Reply_channel()
{
sd[LOCAL_SOCKET] = -1; sd[REMOTE_SOCKET] = -1;
int ret = lx_socketpair(AF_UNIX, SOCK_DGRAM | SOCK_CLOEXEC, 0, sd);
if (ret < 0) {
PRAW("[%d] lx_socketpair failed with %d", lx_getpid(), ret);
throw Genode::Ipc_error();
}
}
~Reply_channel()
{
if (sd[LOCAL_SOCKET] != -1) lx_close(sd[LOCAL_SOCKET]);
if (sd[REMOTE_SOCKET] != -1) lx_close(sd[REMOTE_SOCKET]);
}
int local_socket() const { return sd[LOCAL_SOCKET]; }
int remote_socket() const { return sd[REMOTE_SOCKET]; }
} reply_channel;
/* assemble message */
/* marshal reply capability */
snd_msg.marshal_socket(reply_channel.remote_socket());
/* marshal capabilities contained in 'snd_msgbuf' */
insert_sds_into_message(snd_msg, snd_header, snd_msgbuf);
int const send_ret = lx_sendmsg(dst.dst().socket, snd_msg.msg(), 0);
if (send_ret < 0) {
PRAW("[%d] lx_sendmsg to sd %d failed with %d in lx_call()",
lx_getpid(), dst.dst().socket, send_ret);
throw Genode::Ipc_error();
}
/* receive reply */
Protocol_header &rcv_header = rcv_msgbuf.header<Protocol_header>();
rcv_header.protocol_word = 0;
Message rcv_msg(rcv_header.msg_start(),
sizeof(Protocol_header) + rcv_msgbuf.capacity());
rcv_msg.accept_sockets(Message::MAX_SDS_PER_MSG);
rcv_msgbuf.reset();
int const recv_ret = lx_recvmsg(reply_channel.local_socket(), rcv_msg.msg(), 0);
/* system call got interrupted by a signal */
if (recv_ret == -LX_EINTR)
throw Genode::Blocking_canceled();
if (recv_ret < 0) {
PRAW("[%d] lx_recvmsg failed with %d in lx_call()", lx_getpid(), recv_ret);
throw Genode::Ipc_error();
}
extract_sds_from_message(0, rcv_msg, rcv_header, rcv_msgbuf);
return Rpc_exception_code(rcv_header.protocol_word);
}
/****************
** IPC server **
****************/
void Genode::ipc_reply(Native_capability caller, Rpc_exception_code exc,
Msgbuf_base &snd_msg)
{
try { lx_reply(caller.dst().socket, exc, snd_msg); } catch (Ipc_error) { }
}
Genode::Rpc_request Genode::ipc_reply_wait(Reply_capability const &last_caller,
Rpc_exception_code exc,
Msgbuf_base &reply_msg,
Msgbuf_base &request_msg)
{
/* when first called, there was no request yet */
if (last_caller.valid() && exc.value != Rpc_exception_code::INVALID_OBJECT)
lx_reply(last_caller.dst().socket, exc, reply_msg);
/*
* Block infinitely if called from the main thread. This may happen if the
* main thread calls 'sleep_forever()'.
*/
if (!Thread_base::myself()) {
struct timespec ts = { 1000, 0 };
for (;;) lx_nanosleep(&ts, 0);
}
for (;;) {
Protocol_header &header = request_msg.header<Protocol_header>();
Message msg(header.msg_start(), sizeof(Protocol_header) + request_msg.capacity());
msg.accept_sockets(Message::MAX_SDS_PER_MSG);
Native_thread &native_thread = Thread_base::myself()->native_thread();
request_msg.reset();
int const ret = lx_recvmsg(native_thread.socket_pair.server_sd, msg.msg(), 0);
/* system call got interrupted by a signal */
if (ret == -LX_EINTR)
continue;
if (ret < 0) {
PRAW("lx_recvmsg failed with %d in ipc_reply_wait, sd=%d",
ret, native_thread.socket_pair.server_sd);
continue;
}
int const reply_socket = msg.socket_at_index(0);
unsigned long const badge = header.protocol_word;
/* start at offset 1 to skip the reply channel */
extract_sds_from_message(1, msg, header, request_msg);
typedef Native_capability::Dst Dst;
return Rpc_request(Native_capability(Dst(reply_socket), ~0UL), badge);
}
}
Ipc_server::Ipc_server()
:
Native_capability(Dst(-1), 0)
{
/*
* If 'thread' is 0, the constructor was called by the main thread. By
* definition, main is never an RPC entrypoint. However, the main thread
* may call 'sleep_forever()', which instantiates 'Ipc_server'.
*/
if (!Thread_base::myself())
return;
Native_thread &native_thread = Thread_base::myself()->native_thread();
if (native_thread.is_ipc_server) {
PRAW("[%d] unexpected multiple instantiation of Ipc_server by one thread",
lx_gettid());
struct Ipc_server_multiple_instance { };
throw Ipc_server_multiple_instance();
}
Socket_pair const socket_pair = server_socket_pair();
native_thread.socket_pair = socket_pair;
native_thread.is_ipc_server = true;
/* override capability initialization */
*static_cast<Native_capability *>(this) =
Native_capability(Native_capability::Dst(socket_pair.client_sd), 0);
}
Ipc_server::~Ipc_server()
{
if (!Thread_base::myself())
return;
/*
* Reset thread role to non-server such that we can enter 'sleep_forever'
* without getting a warning.
*/
Native_thread &native_thread = Thread_base::myself()->native_thread();
Genode::ep_sd_registry()->disassociate(native_thread.socket_pair.client_sd);
native_thread.is_ipc_server = false;
destroy_server_socket_pair(native_thread.socket_pair);
native_thread.socket_pair = Socket_pair();
}

View File

@ -0,0 +1,198 @@
/*
* \brief Support for the Linux-specific environment
* \author Norman Feske
* \date 2008-12-12
*/
/*
* Copyright (C) 2008-2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
/* Genode includes */
#include <util/arg_string.h>
#include <base/thread.h>
#include <linux_dataspace/client.h>
#include <linux_syscalls.h>
/* base-internal includes */
#include <base/internal/platform_env.h>
#include <base/internal/native_thread.h>
using namespace Genode;
/****************************************************
** Support for Platform_env_base::Rm_session_mmap **
****************************************************/
Genode::size_t
Platform_env_base::Region_map_mmap::_dataspace_size(Dataspace_capability ds)
{
if (ds.valid())
return Dataspace_client(ds).size();
return Local_capability<Dataspace>::deref(ds)->size();
}
int Platform_env_base::Region_map_mmap::_dataspace_fd(Dataspace_capability ds)
{
return Linux_dataspace_client(ds).fd().dst().socket;
}
bool
Platform_env_base::Region_map_mmap::_dataspace_writable(Dataspace_capability ds)
{
return Dataspace_client(ds).writable();
}
/********************************
** Platform_env::Local_parent **
********************************/
static inline size_t get_page_size_log2() { return 12; }
Session_capability
Platform_env::Local_parent::session(Service_name const &service_name,
Session_args const &args,
Affinity const &affinity)
{
if (strcmp(service_name.string(), Rm_session::service_name()) == 0)
{
Local_rm_session *session = new (_alloc) Local_rm_session(_alloc);
return Local_capability<Session>::local_cap(session);
}
return Expanding_parent_client::session(service_name, args, affinity);
}
void Platform_env::Local_parent::close(Session_capability session)
{
/*
* Handle non-local capabilities
*/
if (session.valid()) {
Parent_client::close(session);
return;
}
/*
* Detect capability to local RM session
*/
Capability<Rm_session> rm = static_cap_cast<Rm_session>(session);
destroy(_alloc, Local_capability<Rm_session>::deref(rm));
}
Platform_env::Local_parent::Local_parent(Parent_capability parent_cap,
Emergency_ram_reserve &reserve,
Allocator &alloc)
:
Expanding_parent_client(parent_cap, reserve), _alloc(alloc)
{ }
/******************
** Platform_env **
******************/
/**
* List of Unix environment variables, initialized by the startup code
*/
extern char **lx_environ;
/**
* Read environment variable as long value
*/
static unsigned long get_env_ulong(const char *key)
{
for (char **curr = lx_environ; curr && *curr; curr++) {
Arg arg = Arg_string::find_arg(*curr, key);
if (arg.valid())
return arg.ulong_value(0);
}
return 0;
}
static Parent_capability obtain_parent_cap()
{
long local_name = get_env_ulong("parent_local_name");
/* produce typed capability manually */
typedef Native_capability::Dst Dst;
Dst const dst(PARENT_SOCKET_HANDLE);
return reinterpret_cap_cast<Parent>(Native_capability(dst, local_name));
}
Platform_env::Local_parent &Platform_env::_parent()
{
static Local_parent local_parent(obtain_parent_cap(), *this, _heap);
return local_parent;
}
Platform_env::Platform_env()
:
Platform_env_base(static_cap_cast<Ram_session>(_parent().session("Env::ram_session", "")),
static_cap_cast<Cpu_session>(_parent().session("Env::cpu_session", "")),
static_cap_cast<Pd_session> (_parent().session("Env::pd_session", ""))),
_heap(Platform_env_base::ram_session(), Platform_env_base::rm_session()),
_emergency_ram_ds(ram_session()->alloc(_emergency_ram_size()))
{
/* attach stack area to local address space */
_local_pd_session._address_space.attach_at(_local_pd_session._stack_area.dataspace(),
stack_area_virtual_base(),
stack_area_virtual_size());
env_stack_area_region_map = &_local_pd_session._stack_area;
env_stack_area_ram_session = ram_session();
/* register TID and PID of the main thread at core */
Linux_native_cpu_client native_cpu(cpu_session()->native_cpu());
native_cpu.thread_id(parent()->main_thread_cap(), lx_getpid(), lx_gettid());
}
/*****************************
** Support for IPC library **
*****************************/
namespace Genode {
Socket_pair server_socket_pair()
{
Linux_native_cpu_client native_cpu(env()->cpu_session()->native_cpu());
Socket_pair socket_pair;
Thread_base *thread = Thread_base::myself();
if (thread) {
socket_pair.server_sd = native_cpu.server_sd(thread->cap()).dst().socket;
socket_pair.client_sd = native_cpu.client_sd(thread->cap()).dst().socket;
thread->native_thread().socket_pair = socket_pair;
}
return socket_pair;
}
void destroy_server_socket_pair(Socket_pair socket_pair)
{
/* close local file descriptor if it is valid */
if (socket_pair.server_sd != -1) lx_close(socket_pair.server_sd);
if (socket_pair.client_sd != -1) lx_close(socket_pair.client_sd);
}
}

View File

@ -0,0 +1,69 @@
/*
* \brief Pseudo region map client stub targeting the process-local implementation
* \author Norman Feske
* \date 2011-11-21
*/
/*
* Copyright (C) 2011-2016 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
/* Genode includes */
#include <region_map/client.h>
/* base-internal includes */
#include <base/internal/local_capability.h>
using namespace Genode;
/**
* Return pointer to locally implemented region map
*
* \throw Local_interface::Non_local_capability
*/
static Region_map *_local(Capability<Region_map> cap)
{
return Local_capability<Region_map>::deref(cap);
}
Region_map_client::Region_map_client(Capability<Region_map> session)
: Rpc_client<Region_map>(session) { }
Region_map::Local_addr
Region_map_client::attach(Dataspace_capability ds, size_t size,
off_t offset, bool use_local_addr,
Region_map::Local_addr local_addr,
bool executable)
{
return _local(*this)->attach(ds, size, offset, use_local_addr,
local_addr, executable);
}
void Region_map_client::detach(Local_addr local_addr) {
return _local(*this)->detach(local_addr); }
void Region_map_client::fault_handler(Signal_context_capability /*handler*/)
{
/*
* On Linux, page faults are never reflected to the user land. They
* are always handled by the kernel. If a segmentation fault
* occurs, this condition is being reflected as a CPU exception
* to the handler registered via 'Cpu_session::exception_handler'.
*/
}
Region_map::State Region_map_client::state() { return _local(*this)->state(); }
Dataspace_capability Region_map_client::dataspace() {
return _local(*this)->dataspace(); }

View File

@ -0,0 +1,364 @@
/*
* \brief Implementation of Linux-specific local region map
* \author Norman Feske
* \date 2008-10-22
*
* Under Linux, region management happens at the mercy of the Linux kernel. So,
* all we can do in user land is 1) keep track of regions and (managed)
* dataspaces and 2) get the kernel to manage VM regions as we intent.
*
* The kernel sets up mappings for the binary on execve(), which are text and
* data segments, the stack area and special regions (stack, vdso, vsyscall).
* Later mappings are done by the Genode program itself, which knows nothing
* about these initial mappings. Therefore, most mmap() operations are _soft_
* to detect region conflicts with existing mappings or let the kernel find
* some empty VM area (as core does on other platforms). The only _hard_
* overmaps happen on attachment and population of managed dataspaces. Mapped,
* but not populated dataspaces are "holes" in the Linux VM space represented
* by PROT_NONE mappings (see _reserve_local()).
*
* The stack area is a managed dataspace as on other platforms, which is
* created and attached during program launch. The managed dataspace replaces
* the inital reserved area, which is therefore flushed beforehand. Hybrid
* programs have no stack area.
*
* Note, we do not support nesting of managed dataspaces.
*/
/*
* Copyright (C) 2008-2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
/* Genode includes */
#include <base/thread.h>
#include <linux_dataspace/client.h>
#include <linux_syscalls.h>
/* base-internal includes */
#include <base/internal/local_capability.h>
#include <base/internal/platform_env.h>
#include <base/internal/stack_area.h>
using namespace Genode;
static bool is_sub_rm_session(Dataspace_capability ds)
{
if (ds.valid())
return false;
return Local_capability<Dataspace>::deref(ds) != 0;
}
addr_t Platform_env_base::Region_map_mmap::_reserve_local(bool use_local_addr,
addr_t local_addr,
Genode::size_t size)
{
/* special handling for stack area */
if (use_local_addr
&& local_addr == stack_area_virtual_base()
&& size == stack_area_virtual_size()) {
/*
* On the first request to reserve the stack area, we flush the
* initial mapping preserved in linker script and apply the actual
* reservation. Subsequent requests are just ignored.
*/
static struct Context
{
Context()
{
flush_stack_area();
reserve_stack_area();
}
} inst;
return local_addr;
}
int const flags = MAP_ANONYMOUS | MAP_PRIVATE;
int const prot = PROT_NONE;
void * const addr_in = use_local_addr ? (void *)local_addr : 0;
void * const addr_out = lx_mmap(addr_in, size, prot, flags, -1, 0);
/* reserve at local address failed - unmap incorrect mapping */
if (use_local_addr && addr_in != addr_out)
lx_munmap((void *)addr_out, size);
if ((use_local_addr && addr_in != addr_out)
|| (((long)addr_out < 0) && ((long)addr_out > -4095))) {
PERR("_reserve_local: lx_mmap failed (addr_in=%p,addr_out=%p/%ld)",
addr_in, addr_out, (long)addr_out);
throw Region_map::Region_conflict();
}
return (addr_t) addr_out;
}
void *
Platform_env_base::Region_map_mmap::_map_local(Dataspace_capability ds,
Genode::size_t size,
addr_t offset,
bool use_local_addr,
addr_t local_addr,
bool executable,
bool overmap)
{
int const fd = _dataspace_fd(ds);
bool const writable = _dataspace_writable(ds);
int const flags = MAP_SHARED | (overmap ? MAP_FIXED : 0);
int const prot = PROT_READ
| (writable ? PROT_WRITE : 0)
| (executable ? PROT_EXEC : 0);
void * const addr_in = use_local_addr ? (void*)local_addr : 0;
void * const addr_out = lx_mmap(addr_in, size, prot, flags, fd, offset);
/*
* We can close the file after calling mmap. The Linux kernel will still
* keep the file mapped. By immediately closing the file descriptor, we
* won't need to keep track of dataspace file descriptors within the
* process.
*/
lx_close(fd);
/* attach at local address failed - unmap incorrect mapping */
if (use_local_addr && addr_in != addr_out)
lx_munmap((void *)addr_out, size);
if ((use_local_addr && addr_in != addr_out)
|| (((long)addr_out < 0) && ((long)addr_out > -4095))) {
PERR("_map_local: lx_mmap failed (addr_in=%p,addr_out=%p/%ld) overmap=%d",
addr_in, addr_out, (long)addr_out, overmap);
throw Region_map::Region_conflict();
}
return addr_out;
}
void Platform_env::Region_map_mmap::_add_to_rmap(Region const &region)
{
if (_rmap.add_region(region) < 0) {
PERR("_add_to_rmap: could not add region to sub RM session");
throw Region_conflict();
}
}
Region_map::Local_addr
Platform_env::Region_map_mmap::attach(Dataspace_capability ds,
size_t size, off_t offset,
bool use_local_addr,
Region_map::Local_addr local_addr,
bool executable)
{
Lock::Guard lock_guard(_lock);
/* only support attach_at for sub RM sessions */
if (_sub_rm && !use_local_addr) {
PERR("Region_map_mmap::attach: attaching w/o local addr not supported\n");
throw Out_of_metadata();
}
if (offset < 0) {
PERR("Region_map_mmap::attach: negative offset not supported\n");
throw Region_conflict();
}
size_t const remaining_ds_size = _dataspace_size(ds) > (addr_t)offset
? _dataspace_size(ds) - (addr_t)offset : 0;
/* determine size of virtual address region */
size_t const region_size = size ? min(remaining_ds_size, size)
: remaining_ds_size;
if (region_size == 0)
throw Region_conflict();
/*
* We have to distinguish the following cases
*
* 1 we are a root RM session and ds is a plain dataspace
* 2 we are a root RM session and ds is a sub RM session
* 2.1 ds is already attached (base != 0)
* 2.2 ds is not yet attached
* 3 we are a sub RM session and ds is a plain dataspace
* 3.1 we are attached to a root RM session
* 3.2 we are not yet attached
* 4 we are a sub RM session and ds is a sub RM session (not supported)
*/
if (_sub_rm) {
/*
* Case 4
*/
if (is_sub_rm_session(ds)) {
PERR("Region_map_mmap::attach: nesting sub RM sessions is not supported");
throw Invalid_dataspace();
}
/*
* Check for the dataspace to not exceed the boundaries of the
* sub RM session
*/
if (region_size + (addr_t)local_addr > _size) {
PERR("Region_map_mmap::attach: dataspace does not fit in sub RM session");
throw Region_conflict();
}
_add_to_rmap(Region(local_addr, offset, ds, region_size));
/*
* Case 3.1
*
* This RM session is a sub RM session. If the sub RM session is
* attached (_base > 0), add its attachment offset to the local base
* and map it. We have to enforce the mapping via the 'overmap'
* argument as the region was reserved by a PROT_NONE mapping.
*/
if (_is_attached())
_map_local(ds, region_size, offset, true, _base + (addr_t)local_addr, executable, true);
return (void *)local_addr;
} else {
if (is_sub_rm_session(ds)) {
Dataspace *ds_if = Local_capability<Dataspace>::deref(ds);
Region_map_mmap *rm = dynamic_cast<Region_map_mmap *>(ds_if);
if (!rm)
throw Invalid_dataspace();
/*
* Case 2.1
*
* Detect if sub RM session is already attached
*/
if (rm->_base) {
PERR("Region_map_mmap::attach: mapping a sub RM session twice is not supported");
throw Out_of_metadata();
}
/*
* Reserve local address range that can hold the entire sub RM
* session.
*/
rm->_base = _reserve_local(use_local_addr, local_addr, region_size);
_add_to_rmap(Region(rm->_base, offset, ds, region_size));
/*
* Cases 2.2, 3.2
*
* The sub rm session was not attached until now but it may have
* been populated with dataspaces. Go through all regions and map
* each of them.
*/
for (int i = 0; i < Region_registry::MAX_REGIONS; i++) {
Region region = rm->_rmap.region(i);
if (!region.used())
continue;
/*
* We have to enforce the mapping via the 'overmap' argument as
* the region was reserved by a PROT_NONE mapping.
*/
_map_local(region.dataspace(), region.size(), region.offset(),
true, rm->_base + region.start() + region.offset(),
executable, true);
}
return rm->_base;
} else {
/*
* Case 1
*
* Boring, a plain dataspace is attached to a root RM session.
* Note, we do not overmap.
*/
void *addr = _map_local(ds, region_size, offset, use_local_addr,
local_addr, executable);
_add_to_rmap(Region((addr_t)addr, offset, ds, region_size));
return addr;
}
}
}
void Platform_env::Region_map_mmap::detach(Region_map::Local_addr local_addr)
{
Lock::Guard lock_guard(_lock);
/*
* Cases
*
* 1 we are root RM
* 2 we are sub RM (region must be normal dataspace)
* 2.1 we are not attached
* 2.2 we are attached to a root RM
*/
Region region = _rmap.lookup(local_addr);
if (!region.used())
return;
/*
* Remove meta data from region map
*/
_rmap.remove_region(local_addr);
if (_sub_rm) {
/*
* Case 2.1, 2.2
*
* By removing a region from an attached sub RM session we mark the
* corresponding local address range as reserved. A plain 'munmap'
* would mark this range as free to use for the root RM session, which
* we need to prevent.
*
* If we are not attached, no local address-space manipulation is
* needed.
*/
if (_is_attached()) {
lx_munmap((void *)((addr_t)local_addr + _base), region.size());
_reserve_local(true, (addr_t)local_addr + _base, region.size());
}
} else {
/*
* Case 1
*
* We need no distiction between detaching normal dataspaces and
* sub RM session. In both cases, we simply mark the local address
* range as free.
*/
lx_munmap(local_addr, region.size());
}
/*
* If the detached dataspace is sub RM session, mark it as detached
*/
if (is_sub_rm_session(region.dataspace())) {
Dataspace *ds_if = Local_capability<Dataspace>::deref(region.dataspace());
Region_map_mmap *rm = dynamic_cast<Region_map_mmap *>(ds_if);
if (rm)
rm->_base = 0;
}
}

View File

@ -0,0 +1,43 @@
/*
* \brief Pseudo RM session client stub targeting the process-local implementation
* \author Norman Feske
* \date 2011-11-21
*/
/*
* Copyright (C) 2011-2016 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
/* Genode includes */
#include <rm_session/client.h>
/* base-internal includes */
#include <base/internal/local_capability.h>
using namespace Genode;
/**
* Return pointer to locally implemented RM session
*
* \throw Local_interface::Non_local_capability
*/
static Rm_session *_local(Capability<Rm_session> cap)
{
return Local_capability<Rm_session>::deref(cap);
}
Rm_session_client::Rm_session_client(Capability<Rm_session> session)
: Rpc_client<Rm_session>(session) { }
Capability<Region_map> Rm_session_client::create(size_t size) {
return _local(*this)->create(size); }
void Rm_session_client::destroy(Capability<Region_map> cap) {
_local(*this)->destroy(cap); }

View File

@ -0,0 +1,111 @@
/*
* \brief Thread-environment support common to all programs
* \author Martin Stein
* \date 2013-12-13
*/
/*
* Copyright (C) 2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
/* Genode includes */
#include <base/stdint.h>
#include <base/env.h>
#include <linux_syscalls.h>
using namespace Genode;
extern addr_t * __initial_sp;
/*
* Define 'lx_environ' pointer.
*/
char **lx_environ;
/**
* Natively aligned memory location used in the lock implementation
*/
int main_thread_futex_counter __attribute__((aligned(sizeof(addr_t))));
/**
* Genode console hook
*/
extern "C" int stdout_write(char const *);
/*
* Core lacks the hook, so provide a base-linux specific weak implementation
*/
extern "C" __attribute__((weak)) int stdout_write(char const *s)
{
return raw_write_str(s);
}
/**
* Signal handler for exceptions like segmentation faults
*/
void exception_signal_handler(int signum)
{
char const *reason = nullptr;
switch (signum) {
case LX_SIGILL: reason = "Illegal instruction"; break;
case LX_SIGBUS: reason = "Bad memory access"; break;
case LX_SIGFPE: reason = "Floating point exception"; break;
case LX_SIGSEGV: reason = "Segmentation fault"; break;
default: /* unexpected signal */ return;
}
/*
* We can't use Genode::printf() as the exception may have occurred in the
* Genode console library itself, which uses a mutex. Therefore, we use
* Genode::snprintf() and call the console hook directly to minimize
* overlaps with other code paths.
*/
static char msg[128];
snprintf(msg, sizeof(msg),
ESC_ERR "%s (signum=%d), see Linux kernel log for details" ESC_END "\n",
reason, signum);
stdout_write(msg);
/*
* We reset the signal handler to SIG_DFL and trigger exception again,
* i.e., terminate the process.
*/
lx_sigaction(signum, nullptr);
return;
}
void lx_exception_signal_handlers()
{
lx_sigaction(LX_SIGILL, exception_signal_handler);
lx_sigaction(LX_SIGBUS, exception_signal_handler);
lx_sigaction(LX_SIGFPE, exception_signal_handler);
lx_sigaction(LX_SIGSEGV, exception_signal_handler);
}
/*****************************
** Startup library support **
*****************************/
void prepare_init_main_thread()
{
/*
* Initialize the 'lx_environ' pointer
*
* environ = &argv[argc + 1]
* __initial_sp[0] = argc (always 1 in Genode)
* __initial_sp[1] = argv[0]
* __initial_sp[2] = NULL
* __initial_sp[3] = environ
*/
lx_environ = (char**)&__initial_sp[3];
lx_exception_signal_handlers();
}

View File

@ -0,0 +1,156 @@
/*
* \brief Implementation of the Thread API via Linux threads
* \author Norman Feske
* \author Martin Stein
* \date 2006-06-13
*/
/*
* Copyright (C) 2006-2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
/* Genode includes */
#include <base/env.h>
#include <base/thread.h>
#include <base/snprintf.h>
#include <base/sleep.h>
#include <linux_native_cpu/client.h>
/* base-internal includes */
#include <base/internal/stack.h>
/* Linux syscall bindings */
#include <linux_syscalls.h>
using namespace Genode;
extern int main_thread_futex_counter;
static void empty_signal_handler(int) { }
static Lock &startup_lock()
{
static Lock lock(Lock::LOCKED);
return lock;
}
/**
* Signal handler for killing the thread
*/
static void thread_exit_signal_handler(int) { lx_exit(0); }
static char signal_stack[0x2000] __attribute__((aligned(0x1000)));
void Thread_base::_thread_start()
{
lx_sigaltstack(signal_stack, sizeof(signal_stack));
/*
* Set signal handler such that canceled system calls get not
* transparently retried after a signal gets received.
*/
lx_sigaction(LX_SIGUSR1, empty_signal_handler);
Thread_base * const thread = Thread_base::myself();
/* inform core about the new thread and process ID of the new thread */
Linux_native_cpu_client native_cpu(thread->_cpu_session->native_cpu());
native_cpu.thread_id(thread->cap(), thread->native_thread().pid, thread->native_thread().tid);
/* wakeup 'start' function */
startup_lock().unlock();
thread->entry();
/* unblock caller of 'join()' */
thread->_join_lock.unlock();
sleep_forever();
}
void Thread_base::_init_platform_thread(size_t weight, Type type)
{
/* if no cpu session is given, use it from the environment */
if (!_cpu_session)
_cpu_session = env()->cpu_session();
/* for normal threads create an object at the CPU session */
if (type == NORMAL) {
_thread_cap = _cpu_session->create_thread(env()->pd_session_cap(),
weight, _stack->name().string());
return;
}
/* adjust initial object state for main threads */
native_thread().futex_counter = main_thread_futex_counter;
_thread_cap = env()->parent()->main_thread_cap();
}
void Thread_base::_deinit_platform_thread()
{
/*
* Kill thread until it is really really dead
*
* We use the 'tgkill' system call to kill the thread. This system call
* returns immediately and just flags the corresponding signal at the
* targeted thread context. However, the thread still lives until the
* signal flags are evaluated. When leaving this function, however, we want
* to be sure that the thread is no more executing any code such that we
* an safely free and unmap the thread's stack. So we call 'tgkill' in a
* loop until we get an error indicating that the thread does not exists
* anymore.
*/
for (;;) {
/* destroy thread locally */
int ret = lx_tgkill(native_thread().pid, native_thread().tid, LX_SIGCANCEL);
if (ret < 0) break;
/* if thread still exists, wait a bit and try to kill it again */
struct timespec ts = { 0, 500 };
lx_nanosleep(&ts, 0);
}
/* inform core about the killed thread */
_cpu_session->kill_thread(_thread_cap);
}
void Thread_base::start()
{
/* synchronize calls of the 'start' function */
static Lock lock;
Lock::Guard guard(lock);
/*
* The first time we enter this code path, the 'start' function is
* called by the main thread as there cannot exist other threads
* without executing this function. When first called, we initialize
* the thread lib here.
*/
static bool threadlib_initialized = false;
if (!threadlib_initialized) {
lx_sigaction(LX_SIGCANCEL, thread_exit_signal_handler);
threadlib_initialized = true;
}
native_thread().tid = lx_create_thread(Thread_base::_thread_start, stack_top(), this);
native_thread().pid = lx_getpid();
/* wait until the 'thread_start' function got entered */
startup_lock().lock();
}
void Thread_base::cancel_blocking()
{
_cpu_session->cancel_blocking(_thread_cap);
}