genode/base-hw/include/kernel/interface.h

280 lines
7.8 KiB
C
Raw Normal View History

/*
* \brief Interface between kernel and userland
* \author Martin stein
* \date 2011-11-30
*/
/*
2013-01-10 20:44:47 +00:00
* Copyright (C) 2011-2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _KERNEL__INTERFACE_H_
#define _KERNEL__INTERFACE_H_
/* base-hw includes */
#include <kernel/interface_support.h>
namespace Genode
{
class Native_utcb;
class Platform_pd;
class Tlb;
}
namespace Kernel
{
typedef Genode::Tlb Tlb;
typedef Genode::addr_t addr_t;
typedef Genode::size_t size_t;
typedef Genode::Platform_pd Platform_pd;
typedef Genode::Native_utcb Native_utcb;
/**
* Kernel names of the kernel calls
*/
constexpr Call_arg call_id_pause_thread() { return 0; }
constexpr Call_arg call_id_resume_thread() { return 1; }
constexpr Call_arg call_id_yield_thread() { return 2; }
constexpr Call_arg call_id_send_request_msg() { return 3; }
constexpr Call_arg call_id_send_reply_msg() { return 4; }
constexpr Call_arg call_id_await_request_msg() { return 5; }
constexpr Call_arg call_id_kill_signal_context() { return 6; }
constexpr Call_arg call_id_submit_signal() { return 7; }
constexpr Call_arg call_id_await_signal() { return 8; }
constexpr Call_arg call_id_signal_pending() { return 9; }
constexpr Call_arg call_id_ack_signal() { return 10; }
constexpr Call_arg call_id_print_char() { return 11; }
/*****************************************************************
** Kernel call with 1 to 6 arguments **
** **
** These functions must not be inline to ensure that objects, **
** wich are referenced by arguments, are tagged as "used" even **
** though only the pointer gets handled in here. **
*****************************************************************/
Call_ret call(Call_arg arg_0);
Call_ret call(Call_arg arg_0,
Call_arg arg_1);
Call_ret call(Call_arg arg_0,
Call_arg arg_1,
Call_arg arg_2);
Call_ret call(Call_arg arg_0,
Call_arg arg_1,
Call_arg arg_2,
Call_arg arg_3);
Call_ret call(Call_arg arg_0,
Call_arg arg_1,
Call_arg arg_2,
Call_arg arg_3,
Call_arg arg_4);
Call_ret call(Call_arg arg_0,
Call_arg arg_1,
Call_arg arg_2,
Call_arg arg_3,
Call_arg arg_4,
Call_arg arg_5);
/**
* Prevent thread from participating in CPU scheduling
*
* \param thread_id kernel name of the targeted thread or 0
*
* \retval 0 succeeded
* \retval -1 the targeted thread does not exist or is still active
*
* If thread_id is set to 0 the caller targets itself. If the caller
* doesn't target itself, the call is restricted to core threads.
*/
inline int pause_thread(unsigned const thread_id)
{
return call(call_id_pause_thread(), thread_id);
}
/**
* Let an already started thread participate in CPU scheduling
*
* \param thread_id kernel name of the targeted thread
*
* \retval 0 succeeded and thread was paused beforehand
* \retval 1 succeeded and thread was active beforehand
* \retval -1 failed
*
* If the targeted thread blocks for any event except a 'start_thread'
* call this call cancels the blocking.
*/
inline int resume_thread(unsigned const thread_id)
{
return call(call_id_resume_thread(), thread_id);
}
/**
* Let the current thread give up its remaining timeslice
*
* \param thread_id kernel name of the benefited thread
*
* If thread_id is valid the call will resume the targeted thread
* additionally.
*/
inline void yield_thread(unsigned const thread_id)
{
call(call_id_yield_thread(), thread_id);
}
/**
* Send request message and await receipt of corresponding reply message
*
* \param thread_id kernel name of targeted thread
*
* \retval 0 succeeded
* \retval -1 failed
*
* If the call returns successful, the received message is located at the
* base of the callers userland thread-context.
*/
inline int send_request_msg(unsigned const thread_id)
{
return call(call_id_send_request_msg(), thread_id);
}
/**
* Await receipt of request message
*
* \retval 0 succeeded
* \retval -1 failed
*
* If the call returns successful, the received message is located at the
* base of the callers userland thread-context.
*/
inline int await_request_msg()
{
return call(call_id_await_request_msg());
}
/**
* Reply to lastly received request message
*
* \param await_request_msg wether the call shall await a request message
*
* \retval 0 await_request_msg == 0 or request-message receipt succeeded
* \retval -1 await_request_msg == 1 and request-message receipt failed
*
* If the call returns successful and await_request_msg == 1, the received
* message is located at the base of the callers userland thread-context.
*/
inline int send_reply_msg(bool const await_request_msg)
{
return call(call_id_send_reply_msg(), await_request_msg);
}
/**
* Print a char c to the kernels serial ouput
*
* If c is set to 0 the kernel prints a table of all threads and their
* current activities to the serial output.
*/
inline void print_char(char const c)
{
call(call_id_print_char(), c);
}
/**
* Await any context of a receiver and optionally ack a context before
2013-09-11 22:48:27 +00:00
*
* \param receiver_id kernel name of the targeted signal receiver
* \param context_id kernel name of a context that shall be acknowledged
*
2013-09-11 22:48:27 +00:00
* \retval 0 suceeded
* \retval -1 failed
*
* If context is set to 0, the call doesn't acknowledge any context.
2013-09-11 22:48:27 +00:00
* If this call returns 0, an instance of 'Signal::Data' is located at the
* base of the callers UTCB. Every occurence of a signal is provided
* through this function until it gets delivered through this function or
* context respectively receiver get destructed. If multiple threads
* listen at the same receiver, and/or multiple contexts of the receiver
* trigger simultanously, there is no assertion about wich thread
* receives, and from wich context. A context that delivered once doesn't
* deliver again unless its last delivery has been acknowledged via
* ack_signal.
*/
inline int await_signal(unsigned const receiver_id,
unsigned const context_id)
2013-09-11 22:48:27 +00:00
{
return call(call_id_await_signal(), receiver_id, context_id);
2013-09-11 22:48:27 +00:00
}
/**
2013-09-11 22:48:27 +00:00
* Return wether any context of a receiver is pending
*
2013-09-11 22:48:27 +00:00
* \param receiver kernel name of the targeted signal receiver
*
* \retval 0 none of the contexts is pending or the receiver doesn't exist
* \retval 1 a context of the signal receiver is pending
*/
2013-09-11 22:48:27 +00:00
inline bool signal_pending(unsigned const receiver)
{
return call(call_id_signal_pending(), receiver);
2013-09-11 22:48:27 +00:00
}
/**
* Trigger a specific signal context
*
2013-09-11 22:48:27 +00:00
* \param context kernel name of the targeted signal context
* \param num how often the context shall be triggered by this call
*
* \retval 0 suceeded
* \retval -1 failed
*/
2013-09-11 22:48:27 +00:00
inline int submit_signal(unsigned const context, unsigned const num)
{
return call(call_id_submit_signal(), context, num);
2013-09-11 22:48:27 +00:00
}
/**
2013-09-11 22:48:27 +00:00
* Acknowledge the processing of the last delivery of a signal context
*
2013-09-11 22:48:27 +00:00
* \param context kernel name of the targeted signal context
*/
2013-09-11 22:48:27 +00:00
inline void ack_signal(unsigned const context)
{
call(call_id_ack_signal(), context);
2013-09-11 22:48:27 +00:00
}
/**
* Halt processing of a signal context synchronously
*
* \param context kernel name of the targeted signal context
*
* \retval 0 suceeded
* \retval -1 failed
*/
inline int kill_signal_context(unsigned const context)
{
return call(call_id_kill_signal_context(), context);
}
}
#endif /* _KERNEL__INTERFACE_H_ */