genode/repos/base/include/base/service.h

445 lines
11 KiB
C
Raw Normal View History

2011-12-22 15:19:25 +00:00
/*
* \brief Service management framework
* \author Norman Feske
* \date 2006-07-12
*/
/*
* Copyright (C) 2006-2017 Genode Labs GmbH
2011-12-22 15:19:25 +00:00
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU Affero General Public License version 3.
2011-12-22 15:19:25 +00:00
*/
#ifndef _INCLUDE__BASE__SERVICE_H_
#define _INCLUDE__BASE__SERVICE_H_
#include <util/list.h>
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
#include <pd_session/client.h>
2011-12-22 15:19:25 +00:00
#include <base/env.h>
#include <base/session_state.h>
#include <base/log.h>
#include <base/registry.h>
#include <base/quota_transfer.h>
2011-12-22 15:19:25 +00:00
namespace Genode {
class Service;
template <typename> class Session_factory;
template <typename> class Local_service;
class Parent_service;
class Async_service;
class Child_service;
}
2011-12-22 15:19:25 +00:00
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
class Genode::Service : public Ram_transfer::Account,
public Cap_transfer::Account
{
public:
2011-12-22 15:19:25 +00:00
typedef Session_state::Name Name;
2011-12-22 15:19:25 +00:00
private:
Name const _name;
protected:
typedef Session_state::Factory Factory;
/**
* Return factory to use for creating 'Session_state' objects
*/
virtual Factory &_factory(Factory &client_factory) { return client_factory; }
public:
/**
* Constructor
*
* \param name service name
*/
Service(Name const &name) : _name(name) { }
virtual ~Service() { }
/**
* Return service name
*/
Name const &name() const { return _name; }
/**
* Create new session-state object
*
* The 'service' argument for the 'Session_state' corresponds to this
* session state. All subsequent 'Session_state' arguments correspond
* to the forwarded 'args'.
*/
template <typename... ARGS>
Session_state &create_session(Factory &client_factory, ARGS &&... args)
{
return _factory(client_factory).create(*this, args...);
}
/**
* Attempt the immediate (synchronous) creation of a session
*
* Sessions to local services and parent services are usually created
* immediately during the dispatching of the 'Parent::session' request.
* In these cases, it is not needed to wait for an asynchronous
* response.
*/
virtual void initiate_request(Session_state &session) = 0;
/**
* Wake up service to query session requests
*/
virtual void wakeup() { }
virtual bool operator == (Service const &other) const { return this == &other; }
};
/**
* Representation of a locally implemented service
*/
template <typename SESSION>
class Genode::Local_service : public Service
{
public:
Follow practices suggested by "Effective C++" The patch adjust the code of the base, base-<kernel>, and os repository. To adapt existing components to fix violations of the best practices suggested by "Effective C++" as reported by the -Weffc++ compiler argument. The changes follow the patterns outlined below: * A class with virtual functions can no longer publicly inherit base classed without a vtable. The inherited object may either be moved to a member variable, or inherited privately. The latter would be used for classes that inherit 'List::Element' or 'Avl_node'. In order to enable the 'List' and 'Avl_tree' to access the meta data, the 'List' must become a friend. * Instead of adding a virtual destructor to abstract base classes, we inherit the new 'Interface' class, which contains a virtual destructor. This way, single-line abstract base classes can stay as compact as they are now. The 'Interface' utility resides in base/include/util/interface.h. * With the new warnings enabled, all member variables must be explicitly initialized. Basic types may be initialized with '='. All other types are initialized with braces '{ ... }' or as class initializers. If basic types and non-basic types appear in a row, it is nice to only use the brace syntax (also for basic types) and align the braces. * If a class contains pointers as members, it must now also provide a copy constructor and assignment operator. In the most cases, one would make them private, effectively disallowing the objects to be copied. Unfortunately, this warning cannot be fixed be inheriting our existing 'Noncopyable' class (the compiler fails to detect that the inheriting class cannot be copied and still gives the error). For now, we have to manually add declarations for both the copy constructor and assignment operator as private class members. Those declarations should be prepended with a comment like this: /* * Noncopyable */ Thread(Thread const &); Thread &operator = (Thread const &); In the future, we should revisit these places and try to replace the pointers with references. In the presence of at least one reference member, the compiler would no longer implicitly generate a copy constructor. So we could remove the manual declaration. Issue #465
2017-12-21 14:42:15 +00:00
struct Factory : Interface
{
typedef Session_state::Args Args;
/**
base: remove Child::heap This patch improves the accounting for the backing store of session-state meta data. Originally, the session state used to be allocated by a child-local heap partition fed from the child's RAM session. However, whereas this approach was somehow practical from a runtime's (parent's) point of view, the child component could not count on the quota in its own RAM session. I.e., if the Child::heap grew at the parent side, the child's RAM session would magically diminish. This caused two problems. First, it violates assumptions of components like init that carefully manage their RAM resources (and giving most of them away their children). Second, if a child transfers most of its RAM session quota to another RAM session (like init does), the child's RAM session may actually not allow the parent's heap to grow, which is a very difficult error condition to deal with. In the new version, there is no Child::heap anymore. Instead, session states are allocated from the runtime's RAM session. In order to let children pay for these costs, the parent withdraws the local session costs from the session quota donated from the child when the child initiates a new session. Hence, in principle, all components on the route of the session request take a small bite from the session quota to pay for their local book keeping Consequently, the session quota that ends up at the server may become depleted more or less, depending on the route. In the case where the remaining quota is insufficient for the server, the server responds with 'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this patch equips the client-side 'Env::session' implementation with the ability to re-issue session requests with successively growing quota donations. For several of core's services (ROM, IO_MEM, IRQ), the default session quota has now increased by 2 KiB, which should suffice for session requests to up to 3 hops as is the common case for most run scripts. For longer routes, the retry mechanism as described above comes into effect. For the time being, we give a warning whenever the server-side quota check triggers the retry mechanism. The warning may eventually be removed at a later stage.
2017-02-19 09:31:50 +00:00
* Create session
*
* \throw Service_denied
* \throw Insufficient_ram_quota
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
* \throw Insufficient_cap_quota
*/
virtual SESSION &create(Args const &, Affinity) = 0;
virtual void upgrade(SESSION &, Args const &) = 0;
virtual void destroy(SESSION &) = 0;
};
/**
* Factory of a local service that provides a single static session
*/
class Single_session_factory : public Factory
{
private:
typedef Session_state::Args Args;
SESSION &_s;
public:
Single_session_factory(SESSION &session) : _s(session) { }
SESSION &create (Args const &, Affinity) override { return _s; }
void upgrade (SESSION &, Args const &) override { }
void destroy (SESSION &) override { }
};
private:
Factory &_factory;
template <typename FUNC>
void _apply_to_rpc_obj(Session_state &session, FUNC const &fn)
{
SESSION *rpc_obj = dynamic_cast<SESSION *>(session.local_ptr);
if (rpc_obj)
fn(*rpc_obj);
else
warning("local ", SESSION::service_name(), " session "
"(", session.args(), ") has no valid RPC object");
}
public:
/**
* Constructor
*/
Local_service(Factory &factory)
: Service(SESSION::service_name()), _factory(factory) { }
void initiate_request(Session_state &session) override
{
switch (session.phase) {
case Session_state::CREATE_REQUESTED:
try {
SESSION &rpc_obj = _factory.create(Session_state::Server_args(session).string(),
session.affinity());
session.local_ptr = &rpc_obj;
session.cap = rpc_obj.cap();
session.phase = Session_state::AVAILABLE;
}
catch (Service_denied) {
session.phase = Session_state::SERVICE_DENIED; }
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
catch (Insufficient_cap_quota) {
session.phase = Session_state::INSUFFICIENT_CAP_QUOTA; }
catch (Insufficient_ram_quota) {
session.phase = Session_state::INSUFFICIENT_RAM_QUOTA; }
catch (...) {
warning("unexpected exception during ",
SESSION::service_name(), " session construction"); }
break;
case Session_state::UPGRADE_REQUESTED:
{
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
String<100> const args("ram_quota=", session.ram_upgrade, ", "
"cap_quota=", session.cap_upgrade);
_apply_to_rpc_obj(session, [&] (SESSION &rpc_obj) {
_factory.upgrade(rpc_obj, args.string()); });
session.phase = Session_state::CAP_HANDED_OUT;
session.confirm_ram_upgrade();
}
break;
case Session_state::CLOSE_REQUESTED:
{
_apply_to_rpc_obj(session, [&] (SESSION &rpc_obj) {
_factory.destroy(rpc_obj); });
session.phase = Session_state::CLOSED;
}
break;
case Session_state::SERVICE_DENIED:
case Session_state::INSUFFICIENT_RAM_QUOTA:
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
case Session_state::INSUFFICIENT_CAP_QUOTA:
case Session_state::AVAILABLE:
case Session_state::CAP_HANDED_OUT:
case Session_state::CLOSED:
break;
}
}
};
/**
* Representation of a service provided by our parent
*/
class Genode::Parent_service : public Service
{
private:
Env &_env;
public:
/**
* Constructor
*/
Parent_service(Env &env, Service::Name const &name)
: Service(name), _env(env) { }
void initiate_request(Session_state &session) override
{
switch (session.phase) {
case Session_state::CREATE_REQUESTED:
session.id_at_parent.construct(session.parent_client,
_env.id_space());
try {
session.cap = _env.session(name().string(),
session.id_at_parent->id(),
Session_state::Server_args(session).string(),
session.affinity());
session.phase = Session_state::AVAILABLE;
}
catch (Out_of_ram) {
session.id_at_parent.destruct();
session.phase = Session_state::SERVICE_DENIED; }
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
catch (Out_of_caps) {
session.id_at_parent.destruct();
session.phase = Session_state::SERVICE_DENIED; }
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
catch (Insufficient_ram_quota) {
session.id_at_parent.destruct();
session.phase = Session_state::INSUFFICIENT_RAM_QUOTA; }
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
catch (Insufficient_cap_quota) {
session.id_at_parent.destruct();
session.phase = Session_state::INSUFFICIENT_CAP_QUOTA; }
catch (Service_denied) {
session.id_at_parent.destruct();
session.phase = Session_state::SERVICE_DENIED; }
break;
case Session_state::UPGRADE_REQUESTED:
{
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
String<100> const args("ram_quota=", session.ram_upgrade, ", "
"cap_quota=", session.cap_upgrade);
if (!session.id_at_parent.constructed())
error("invalid parent-session state: ", session);
try {
_env.upgrade(session.id_at_parent->id(), args.string()); }
catch (Out_of_ram) {
warning("RAM quota exceeded while upgrading parent session"); }
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
catch (Out_of_caps) {
warning("cap quota exceeded while upgrading parent session"); }
session.confirm_ram_upgrade();
session.phase = Session_state::CAP_HANDED_OUT;
}
break;
2011-12-22 15:19:25 +00:00
case Session_state::CLOSE_REQUESTED:
if (session.id_at_parent.constructed())
_env.close(session.id_at_parent->id());
session.id_at_parent.destruct();
session.phase = Session_state::CLOSED;
break;
case Session_state::SERVICE_DENIED:
case Session_state::INSUFFICIENT_RAM_QUOTA:
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
case Session_state::INSUFFICIENT_CAP_QUOTA:
case Session_state::AVAILABLE:
case Session_state::CAP_HANDED_OUT:
case Session_state::CLOSED:
break;
}
}
};
/**
* Representation of a service that asynchronously responds to session request
*/
class Genode::Async_service : public Service
{
public:
Follow practices suggested by "Effective C++" The patch adjust the code of the base, base-<kernel>, and os repository. To adapt existing components to fix violations of the best practices suggested by "Effective C++" as reported by the -Weffc++ compiler argument. The changes follow the patterns outlined below: * A class with virtual functions can no longer publicly inherit base classed without a vtable. The inherited object may either be moved to a member variable, or inherited privately. The latter would be used for classes that inherit 'List::Element' or 'Avl_node'. In order to enable the 'List' and 'Avl_tree' to access the meta data, the 'List' must become a friend. * Instead of adding a virtual destructor to abstract base classes, we inherit the new 'Interface' class, which contains a virtual destructor. This way, single-line abstract base classes can stay as compact as they are now. The 'Interface' utility resides in base/include/util/interface.h. * With the new warnings enabled, all member variables must be explicitly initialized. Basic types may be initialized with '='. All other types are initialized with braces '{ ... }' or as class initializers. If basic types and non-basic types appear in a row, it is nice to only use the brace syntax (also for basic types) and align the braces. * If a class contains pointers as members, it must now also provide a copy constructor and assignment operator. In the most cases, one would make them private, effectively disallowing the objects to be copied. Unfortunately, this warning cannot be fixed be inheriting our existing 'Noncopyable' class (the compiler fails to detect that the inheriting class cannot be copied and still gives the error). For now, we have to manually add declarations for both the copy constructor and assignment operator as private class members. Those declarations should be prepended with a comment like this: /* * Noncopyable */ Thread(Thread const &); Thread &operator = (Thread const &); In the future, we should revisit these places and try to replace the pointers with references. In the presence of at least one reference member, the compiler would no longer implicitly generate a copy constructor. So we could remove the manual declaration. Issue #465
2017-12-21 14:42:15 +00:00
struct Wakeup : Interface { virtual void wakeup_async_service() = 0; };
private:
Id_space<Parent::Server> &_server_id_space;
Session_state::Factory &_server_factory;
Wakeup &_wakeup;
protected:
/*
* In contrast to local services and parent services, session-state
* objects for child services are owned by the server. This enables
* the server to asynchronously respond to close requests when the
* client is already gone.
*/
Factory &_factory(Factory &) override { return _server_factory; }
public:
/**
* Constructor
*
* \param factory server-side session-state factory
* \param name name of service
* \param wakeup callback to be notified on the arrival of new
* session requests
*/
Async_service(Service::Name const &name,
Id_space<Parent::Server> &server_id_space,
Session_state::Factory &factory,
Wakeup &wakeup)
:
Service(name),
_server_id_space(server_id_space),
_server_factory(factory), _wakeup(wakeup)
{ }
void initiate_request(Session_state &session) override
{
if (!session.id_at_server.constructed())
session.id_at_server.construct(session, _server_id_space);
session.async_client_notify = true;
}
bool has_id_space(Id_space<Parent::Server> const &id_space) const
{
return &_server_id_space == &id_space;
}
void wakeup() override { _wakeup.wakeup_async_service(); }
};
/**
* Representation of a service that is implemented in a child
*/
class Genode::Child_service : public Async_service
{
private:
Pd_session_client _pd;
public:
/**
* Constructor
*/
Child_service(Service::Name const &name,
Id_space<Parent::Server> &server_id_space,
Session_state::Factory &factory,
Wakeup &wakeup,
Follow practices suggested by "Effective C++" The patch adjust the code of the base, base-<kernel>, and os repository. To adapt existing components to fix violations of the best practices suggested by "Effective C++" as reported by the -Weffc++ compiler argument. The changes follow the patterns outlined below: * A class with virtual functions can no longer publicly inherit base classed without a vtable. The inherited object may either be moved to a member variable, or inherited privately. The latter would be used for classes that inherit 'List::Element' or 'Avl_node'. In order to enable the 'List' and 'Avl_tree' to access the meta data, the 'List' must become a friend. * Instead of adding a virtual destructor to abstract base classes, we inherit the new 'Interface' class, which contains a virtual destructor. This way, single-line abstract base classes can stay as compact as they are now. The 'Interface' utility resides in base/include/util/interface.h. * With the new warnings enabled, all member variables must be explicitly initialized. Basic types may be initialized with '='. All other types are initialized with braces '{ ... }' or as class initializers. If basic types and non-basic types appear in a row, it is nice to only use the brace syntax (also for basic types) and align the braces. * If a class contains pointers as members, it must now also provide a copy constructor and assignment operator. In the most cases, one would make them private, effectively disallowing the objects to be copied. Unfortunately, this warning cannot be fixed be inheriting our existing 'Noncopyable' class (the compiler fails to detect that the inheriting class cannot be copied and still gives the error). For now, we have to manually add declarations for both the copy constructor and assignment operator as private class members. Those declarations should be prepended with a comment like this: /* * Noncopyable */ Thread(Thread const &); Thread &operator = (Thread const &); In the future, we should revisit these places and try to replace the pointers with references. In the presence of at least one reference member, the compiler would no longer implicitly generate a copy constructor. So we could remove the manual declaration. Issue #465
2017-12-21 14:42:15 +00:00
Pd_session_capability,
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
Pd_session_capability pd)
:
Async_service(name, server_id_space, factory, wakeup), _pd(pd)
{ }
/**
* Ram_transfer::Account interface
*/
base/os: remove deprecated APIs This commit removes APIs that were previously marked as deprecated. This change has the following implications: - The use of the global 'env()' accessor is not possible anymore. - Boolean accessor methods are no longer prefixed with 'is_'. E.g., instead of 'is_valid()', use 'valid()'. - The last traces of 'Ram_session' are gone now. The 'Env::ram()' accessor returns the 'Ram_allocator' interface, which is a subset of the 'Pd_session' interface. - All connection constructors need the 'Env' as argument. - The 'Reporter' constructor needs an 'Env' argument now because the reporter creates a report connection. - The old overload 'Child_policy::resolve_session_request' that returned a 'Service' does not exist anymore. - The base/printf.h header has been removed, use base/log.h instead. - The old notion of 'Signal_dispatcher' is gone. Use 'Signal_handler'. - Transitional headers like os/server.h, cap_session/, volatile_object.h, os/attached*_dataspace.h, signal_rpc_dispatcher.h have been removed. - The distinction between 'Thread_state' and 'Thread_state_base' does not exist anymore. - The header cpu_thread/capability.h along with the type definition of 'Cpu_thread_capability' has been removed. Use the type 'Thread_capability' define in cpu_session/cpu_session.h instead. - Several XML utilities (i.e., at os/include/decorator) could be removed because their functionality is nowadays covered by util/xml_node.h. - The 'os/ram_session_guard.h' has been removed. Use 'Constrained_ram_allocator' provided by base/ram_allocator.h instead. Issue #1987
2019-01-30 16:27:46 +00:00
void transfer(Pd_session_capability to, Ram_quota amount) override
{
if (to.valid()) _pd.transfer_quota(to, amount);
}
/**
* Ram_transfer::Account interface
*/
base/os: remove deprecated APIs This commit removes APIs that were previously marked as deprecated. This change has the following implications: - The use of the global 'env()' accessor is not possible anymore. - Boolean accessor methods are no longer prefixed with 'is_'. E.g., instead of 'is_valid()', use 'valid()'. - The last traces of 'Ram_session' are gone now. The 'Env::ram()' accessor returns the 'Ram_allocator' interface, which is a subset of the 'Pd_session' interface. - All connection constructors need the 'Env' as argument. - The 'Reporter' constructor needs an 'Env' argument now because the reporter creates a report connection. - The old overload 'Child_policy::resolve_session_request' that returned a 'Service' does not exist anymore. - The base/printf.h header has been removed, use base/log.h instead. - The old notion of 'Signal_dispatcher' is gone. Use 'Signal_handler'. - Transitional headers like os/server.h, cap_session/, volatile_object.h, os/attached*_dataspace.h, signal_rpc_dispatcher.h have been removed. - The distinction between 'Thread_state' and 'Thread_state_base' does not exist anymore. - The header cpu_thread/capability.h along with the type definition of 'Cpu_thread_capability' has been removed. Use the type 'Thread_capability' define in cpu_session/cpu_session.h instead. - Several XML utilities (i.e., at os/include/decorator) could be removed because their functionality is nowadays covered by util/xml_node.h. - The 'os/ram_session_guard.h' has been removed. Use 'Constrained_ram_allocator' provided by base/ram_allocator.h instead. Issue #1987
2019-01-30 16:27:46 +00:00
Pd_session_capability cap(Ram_quota) const override { return _pd.rpc_cap(); }
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 19:35:43 +00:00
/**
* Cap_transfer::Account interface
*/
void transfer(Pd_session_capability to, Cap_quota amount) override
{
if (to.valid()) _pd.transfer_quota(to, amount);
}
/**
* Cap_transfer::Account interface
*/
base/os: remove deprecated APIs This commit removes APIs that were previously marked as deprecated. This change has the following implications: - The use of the global 'env()' accessor is not possible anymore. - Boolean accessor methods are no longer prefixed with 'is_'. E.g., instead of 'is_valid()', use 'valid()'. - The last traces of 'Ram_session' are gone now. The 'Env::ram()' accessor returns the 'Ram_allocator' interface, which is a subset of the 'Pd_session' interface. - All connection constructors need the 'Env' as argument. - The 'Reporter' constructor needs an 'Env' argument now because the reporter creates a report connection. - The old overload 'Child_policy::resolve_session_request' that returned a 'Service' does not exist anymore. - The base/printf.h header has been removed, use base/log.h instead. - The old notion of 'Signal_dispatcher' is gone. Use 'Signal_handler'. - Transitional headers like os/server.h, cap_session/, volatile_object.h, os/attached*_dataspace.h, signal_rpc_dispatcher.h have been removed. - The distinction between 'Thread_state' and 'Thread_state_base' does not exist anymore. - The header cpu_thread/capability.h along with the type definition of 'Cpu_thread_capability' has been removed. Use the type 'Thread_capability' define in cpu_session/cpu_session.h instead. - Several XML utilities (i.e., at os/include/decorator) could be removed because their functionality is nowadays covered by util/xml_node.h. - The 'os/ram_session_guard.h' has been removed. Use 'Constrained_ram_allocator' provided by base/ram_allocator.h instead. Issue #1987
2019-01-30 16:27:46 +00:00
Pd_session_capability cap(Cap_quota) const override { return _pd.rpc_cap(); }
};
2011-12-22 15:19:25 +00:00
#endif /* _INCLUDE__BASE__SERVICE_H_ */