ecoute/AudioTranscriber.py
2023-05-12 21:08:31 -04:00

117 lines
4.9 KiB
Python

import whisper
import torch
import wave
import os
import threading
from tempfile import NamedTemporaryFile
import custom_speech_recognition as sr
import io
from datetime import timedelta
import pyaudiowpatch as pyaudio
from AudioRecorder import DefaultMicRecorder, DefaultSpeakerRecorder
from heapq import merge
PHRASE_TIMEOUT = 3.01
MAX_PHRASES = 10
class AudioTranscriber:
def __init__(self, default_mic : DefaultMicRecorder, default_speaker : DefaultSpeakerRecorder):
self.mic_transcript_data = []
self.speaker_transcript_data = []
self.transcript_changed_event = threading.Event()
self.audio_model = whisper.load_model(os.getcwd() + r'\tiny.en' + '.pt')
self.mic_sample_rate = default_mic.source.SAMPLE_RATE
self.mic_sample_width = default_mic.source.SAMPLE_WIDTH
self.mic_channels = default_mic.num_channels
self.speaker_sample_rate = default_speaker.source.SAMPLE_RATE
self.speaker_sample_width = default_speaker.source.SAMPLE_WIDTH
self.speaker_channels = default_speaker.num_channels
def create_transcription_from_queue(self, audio_queue):
mic_last_sample = bytes()
speaker_last_sample = bytes()
mic_last_spoken = None
speaker_last_spoken = None
mic_start_new_phrase = True
speaker_start_new_phrase = True
while True:
top_of_queue = audio_queue.get()
who_spoke = top_of_queue[0]
data = top_of_queue[1]
time_spoken = top_of_queue[2]
if who_spoke == "You":
if mic_last_spoken and time_spoken - mic_last_spoken > timedelta(seconds=PHRASE_TIMEOUT):
mic_last_sample = bytes()
mic_start_new_phrase = True
else:
mic_start_new_phrase = False
mic_last_sample += data
mic_last_spoken = time_spoken
mic_temp_file = NamedTemporaryFile().name
audio_data = sr.AudioData(mic_last_sample, self.mic_sample_rate, self.mic_sample_width)
wav_data = io.BytesIO(audio_data.get_wav_data())
with open(mic_temp_file, 'w+b') as f:
f.write(wav_data.read())
result = self.audio_model.transcribe(mic_temp_file, fp16=torch.cuda.is_available())
text = result['text'].strip()
if text != '' and text.lower() != 'you':
if mic_start_new_phrase or len(self.mic_transcript_data) == 0:
if len(self.mic_transcript_data) > MAX_PHRASES:
self.mic_transcript_data.pop()
self.mic_transcript_data = [(who_spoke + ": [" + text + ']\n\n', time_spoken)] + self.mic_transcript_data
self.transcript_changed_event.set()
else:
self.mic_transcript_data[0] = (who_spoke + ": [" + text + ']\n\n',
time_spoken)
self.transcript_changed_event.set()
else:
if speaker_last_spoken and time_spoken - speaker_last_spoken > timedelta(seconds=PHRASE_TIMEOUT):
speaker_last_sample = bytes()
speaker_start_new_phrase = True
else:
speaker_start_new_phrase = False
speaker_last_sample += data
speaker_last_spoken = time_spoken
speaker_temp_file = NamedTemporaryFile().name
with wave.open(speaker_temp_file, 'wb') as wf:
wf.setnchannels(self.speaker_channels)
p = pyaudio.PyAudio()
wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
wf.setframerate(self.speaker_sample_rate)
wf.writeframes(speaker_last_sample)
result = self.audio_model.transcribe(speaker_temp_file, fp16=torch.cuda.is_available())
text = result['text'].strip()
if text != '' and text.lower() != 'you':
if speaker_start_new_phrase or len(self.speaker_transcript_data) == 0:
if len(self.mic_transcript_data) > MAX_PHRASES:
self.mic_transcript_data.pop()
self.speaker_transcript_data = [(who_spoke + ": [" + text + ']\n\n', time_spoken)] + self.speaker_transcript_data
self.transcript_changed_event.set()
else:
self.speaker_transcript_data[0] = (who_spoke + ": [" + text + ']\n\n',
time_spoken)
self.transcript_changed_event.set()
def get_transcript(self):
key = lambda x : x[1]
transcript_tuple = list(merge(self.mic_transcript_data, self.speaker_transcript_data, key=key, reverse=True))
transcript_tuple = transcript_tuple[0:MAX_PHRASES]
return "".join([t[0] for t in transcript_tuple])