mirror of
https://github.com/crosstool-ng/crosstool-ng.git
synced 2024-12-22 06:07:49 +00:00
4a7d144844
After an idea by "Martin Guy" <martinwguy@yahoo.it>: http://sourceware.org/ml/crossgcc/2008-08/msg00037.html /trunk/scripts/crosstool.sh | 4 4 0 0 ++++ /trunk/config/global/build-behave.in | 14 14 0 0 ++++++++++++++ 2 files changed, 18 insertions(+)
482 lines
19 KiB
Bash
Executable File
482 lines
19 KiB
Bash
Executable File
#!/bin/bash
|
|
# Copyright 2007 Yann E. MORIN
|
|
# Licensed under the GPL v2. See COPYING in the root of this package.
|
|
|
|
# This is the main entry point to crosstool
|
|
# This will:
|
|
# - download, extract and patch the toolchain components
|
|
# - build and install each components in turn
|
|
# - and eventually test the resulting toolchain
|
|
|
|
# What this file does is prepare the environment, based upon the user-choosen
|
|
# options. It also checks the existing environment for un-friendly variables,
|
|
# and builds the tools.
|
|
|
|
# Parse the common functions
|
|
# Note: some initialisation and sanitizing is done while parsing this file,
|
|
# most notably:
|
|
# - set trap handler on errors,
|
|
# - don't hash commands lookups,
|
|
# - initialise logging.
|
|
. "${CT_LIB_DIR}/scripts/functions"
|
|
|
|
CT_STAR_DATE=$(CT_DoDate +%s%N)
|
|
CT_STAR_DATE_HUMAN=$(CT_DoDate +%Y%m%d.%H%M%S)
|
|
|
|
# Are we configured? We'll need that later...
|
|
CT_TestOrAbort "Configuration file not found. Please create one." -f "${CT_TOP_DIR}/.config"
|
|
|
|
# Parse the configuration file
|
|
# It has some info about the logging facility, so include it early
|
|
. "${CT_TOP_DIR}/.config"
|
|
|
|
# Yes! We can do full logging from now on!
|
|
CT_DoLog INFO "Build started ${CT_STAR_DATE_HUMAN}"
|
|
|
|
# renice oursleves
|
|
CT_DoExecLog DEBUG renice ${CT_NICE} $$
|
|
|
|
CT_DoStep DEBUG "Dumping crosstool-NG configuration"
|
|
cat "${CT_TOP_DIR}/.config" |egrep '^(# |)CT_' |CT_DoLog DEBUG
|
|
CT_EndStep
|
|
|
|
# Some sanity checks in the environment and needed tools
|
|
CT_DoLog INFO "Checking environment sanity"
|
|
|
|
CT_DoLog DEBUG "Unsetting and unexporting MAKEFLAGS"
|
|
unset MAKEFLAGS
|
|
export MAKEFLAGS
|
|
|
|
# Other environment sanity checks
|
|
CT_TestAndAbort "Don't set LD_LIBRARY_PATH. It screws up the build." -n "${LD_LIBRARY_PATH}"
|
|
CT_TestAndAbort "Don't set CFLAGS. It screws up the build." -n "${CFLAGS}"
|
|
CT_TestAndAbort "Don't set CXXFLAGS. It screws up the build." -n "${CXXFLAGS}"
|
|
CT_Test "GREP_OPTIONS screws up the build. Resetting." -n "${GREP_OPTIONS}"
|
|
GREP_OPTIONS=
|
|
|
|
CT_DoLog INFO "Building environment variables"
|
|
|
|
# Parse architecture-specific functions
|
|
. "${CT_LIB_DIR}/arch/${CT_ARCH}/functions"
|
|
|
|
# Target tuple: CT_TARGET needs a little love:
|
|
CT_DoBuildTargetTuple
|
|
|
|
# Kludge: If any of the configured options needs CT_TARGET,
|
|
# then rescan the options file now:
|
|
. "${CT_TOP_DIR}/.config"
|
|
|
|
# Second kludge: merge user-supplied target CFLAGS with architecture-provided
|
|
# target CFLAGS. Do the same for LDFLAGS in case it happens in the future.
|
|
# Put user-supplied flags at the end, so that they take precedence.
|
|
CT_TARGET_CFLAGS="${CT_ARCH_TARGET_CFLAGS} ${CT_TARGET_CFLAGS}"
|
|
CT_TARGET_LDFLAGS="${CT_ARCH_TARGET_LDFLAGS} ${CT_TARGET_LDFLAGS}"
|
|
CT_CC_CORE_EXTRA_CONFIG="${CT_ARCH_CC_CORE_EXTRA_CONFIG} ${CT_CC_CORE_EXTRA_CONFIG}"
|
|
CT_CC_EXTRA_CONFIG="${CT_ARCH_CC_EXTRA_CONFIG} ${CT_CC_EXTRA_CONFIG}"
|
|
|
|
# Now, build up the variables from the user-configured options.
|
|
CT_KERNEL_FILE="${CT_KERNEL}-${CT_KERNEL_VERSION}"
|
|
CT_BINUTILS_FILE="binutils-${CT_BINUTILS_VERSION}"
|
|
CT_GMP_FILE="gmp-${CT_GMP_VERSION}"
|
|
CT_MPFR_FILE="mpfr-${CT_MPFR_VERSION}"
|
|
CT_CC_FILE="${CT_CC}-${CT_CC_VERSION}"
|
|
CT_LIBC_FILE="${CT_LIBC}-${CT_LIBC_VERSION}"
|
|
|
|
# Where will we work?
|
|
: "${CT_WORK_DIR:=${CT_TOP_DIR}/targets}"
|
|
CT_TARBALLS_DIR="${CT_WORK_DIR}/tarballs"
|
|
CT_SRC_DIR="${CT_WORK_DIR}/src"
|
|
CT_BUILD_DIR="${CT_WORK_DIR}/${CT_TARGET}/build"
|
|
CT_DEBUG_INSTALL_DIR="${CT_INSTALL_DIR}/${CT_TARGET}/debug-root"
|
|
# Note: we'll always install the core compiler in its own directory, so as to
|
|
# not mix the two builds: core and final.
|
|
CT_CC_CORE_STATIC_PREFIX_DIR="${CT_BUILD_DIR}/${CT_CC}-core-static"
|
|
CT_CC_CORE_SHARED_PREFIX_DIR="${CT_BUILD_DIR}/${CT_CC}-core-shared"
|
|
CT_STATE_DIR="${CT_WORK_DIR}/${CT_TARGET}/state"
|
|
|
|
# We must ensure that we can restart if asked for!
|
|
if [ -n "${CT_RESTART}" -a ! -d "${CT_STATE_DIR}" ]; then
|
|
CT_DoLog ERROR "You asked to restart a non-restartable build"
|
|
CT_DoLog ERROR "This happened because you didn't set CT_DEBUG_CT_SAVE_STEPS"
|
|
CT_DoLog ERROR "in the config options for the previous build, or the state"
|
|
CT_DoLog ERROR "directory for the previous build was deleted."
|
|
CT_Abort "I will stop here to avoid any carnage"
|
|
fi
|
|
|
|
if [ -n "${CT_LOCAL_TARBALLS_DIR}" ]; then
|
|
# Make absolute path, it so much easier!
|
|
CT_LOCAL_TARBALLS_DIR=$(CT_MakeAbsolutePath "${CT_LOCAL_TARBALLS_DIR}")
|
|
fi
|
|
|
|
# If the local tarball directory does not exist, say so, and don't try to save there!
|
|
if [ ! -d "${CT_LOCAL_TARBALLS_DIR}" ]; then
|
|
CT_DoLog WARN "Directory '${CT_LOCAL_TARBALLS_DIR}' does not exist. Will not save downloaded tarballs to local storage."
|
|
CT_SAVE_TARBALLS=
|
|
fi
|
|
|
|
# Some more sanity checks now that we have all paths set up
|
|
case "${CT_LOCAL_TARBALLS_DIR},${CT_TARBALLS_DIR},${CT_SRC_DIR},${CT_BUILD_DIR},${CT_PREFIX_DIR},${CT_INSTALL_DIR}" in
|
|
*" "*) CT_Abort "Don't use spaces in paths, it breaks things.";;
|
|
esac
|
|
|
|
# Check now if we can write to the destination directory:
|
|
if [ -d "${CT_INSTALL_DIR}" ]; then
|
|
CT_TestAndAbort "Destination directory '${CT_INSTALL_DIR}' is not removable" ! -w $(dirname "${CT_INSTALL_DIR}")
|
|
fi
|
|
|
|
# Good, now grab a bit of informations on the system we're being run on,
|
|
# just in case something goes awok, and it's not our fault:
|
|
CT_SYS_USER=$(id -un)
|
|
CT_SYS_HOSTNAME=$(hostname -f 2>/dev/null || true)
|
|
# Hmmm. Some non-DHCP-enabled machines do not have an FQDN... Fall back to node name.
|
|
CT_SYS_HOSTNAME="${CT_SYS_HOSTNAME:-$(uname -n)}"
|
|
CT_SYS_KERNEL=$(uname -s)
|
|
CT_SYS_REVISION=$(uname -r)
|
|
# MacOS X lacks '-o' :
|
|
CT_SYS_OS=$(uname -o || echo "Unknown (maybe MacOS-X)")
|
|
CT_SYS_MACHINE=$(uname -m)
|
|
CT_SYS_PROCESSOR=$(uname -p)
|
|
CT_SYS_GCC=$(gcc -dumpversion)
|
|
CT_SYS_TARGET=$(CT_DoConfigGuess)
|
|
CT_TOOLCHAIN_ID="crosstool-${CT_VERSION} build ${CT_STAR_DATE_HUMAN} by ${CT_SYS_USER}@${CT_SYS_HOSTNAME}"
|
|
|
|
CT_DoLog EXTRA "Preparing working directories"
|
|
|
|
# Ah! The build directory shall be eradicated, even if we restart!
|
|
if [ -d "${CT_BUILD_DIR}" ]; then
|
|
mv "${CT_BUILD_DIR}" "${CT_BUILD_DIR}.$$"
|
|
chmod -R u+w "${CT_BUILD_DIR}.$$"
|
|
setsid nohup rm -rf "${CT_BUILD_DIR}.$$" >/dev/null 2>&1 &
|
|
fi
|
|
|
|
# Don't eradicate directories if we need to restart
|
|
if [ -z "${CT_RESTART}" ]; then
|
|
# Get rid of pre-existing installed toolchain and previous build directories.
|
|
# We need to do that _before_ we can safely log, because the log file will
|
|
# most probably be in the toolchain directory.
|
|
if [ "${CT_FORCE_DOWNLOAD}" = "y" -a -d "${CT_TARBALLS_DIR}" ]; then
|
|
mv "${CT_TARBALLS_DIR}" "${CT_TARBALLS_DIR}.$$"
|
|
chmod -R u+w "${CT_TARBALLS_DIR}.$$"
|
|
setsid nohup rm -rf "${CT_TARBALLS_DIR}.$$" >/dev/null 2>&1 &
|
|
fi
|
|
if [ "${CT_FORCE_EXTRACT}" = "y" -a -d "${CT_SRC_DIR}" ]; then
|
|
mv "${CT_SRC_DIR}" "${CT_SRC_DIR}.$$"
|
|
chmod -R u+w "${CT_SRC_DIR}.$$"
|
|
setsid nohup rm -rf "${CT_SRC_DIR}.$$" >/dev/null 2>&1 &
|
|
fi
|
|
if [ -d "${CT_INSTALL_DIR}" ]; then
|
|
mv "${CT_INSTALL_DIR}" "${CT_INSTALL_DIR}.$$"
|
|
chmod -R u+w "${CT_INSTALL_DIR}.$$"
|
|
setsid nohup rm -rf "${CT_INSTALL_DIR}.$$" >/dev/null 2>&1 &
|
|
fi
|
|
if [ -d "${CT_DEBUG_INSTALL_DIR}" ]; then
|
|
mv "${CT_DEBUG_INSTALL_DIR}" "${CT_DEBUG_INSTALL_DIR}.$$"
|
|
chmod -R u+w "${CT_DEBUG_INSTALL_DIR}.$$"
|
|
setsid nohup rm -rf "${CT_DEBUG_INSTALL_DIR}.$$" >/dev/null 2>&1 &
|
|
fi
|
|
# In case we start anew, get rid of the previously saved state directory
|
|
if [ -d "${CT_STATE_DIR}" ]; then
|
|
mv "${CT_STATE_DIR}" "${CT_STATE_DIR}.$$"
|
|
chmod -R u+w "${CT_STATE_DIR}.$$"
|
|
setsid nohup rm -rf "${CT_STATE_DIR}.$$" >/dev/null 2>&1 &
|
|
fi
|
|
fi
|
|
|
|
# Create the directories we'll use, even if restarting: it does no harm to
|
|
# create already existent directories, and CT_BUILD_DIR needs to be created
|
|
# anyway
|
|
mkdir -p "${CT_TARBALLS_DIR}"
|
|
mkdir -p "${CT_SRC_DIR}"
|
|
mkdir -p "${CT_BUILD_DIR}"
|
|
mkdir -p "${CT_INSTALL_DIR}"
|
|
mkdir -p "${CT_PREFIX_DIR}"
|
|
mkdir -p "${CT_DEBUG_INSTALL_DIR}"
|
|
mkdir -p "${CT_CC_CORE_STATIC_PREFIX_DIR}"
|
|
mkdir -p "${CT_CC_CORE_SHARED_PREFIX_DIR}"
|
|
mkdir -p "${CT_STATE_DIR}"
|
|
|
|
# Kludge: CT_INSTALL_DIR and CT_PREFIX_DIR might have grown read-only if
|
|
# the previous build was successful. To be able to move the logfile there,
|
|
# switch them back to read/write
|
|
chmod -R u+w "${CT_INSTALL_DIR}" "${CT_PREFIX_DIR}"
|
|
|
|
# Redirect log to the actual log file now we can
|
|
# It's quite understandable that the log file will be installed in the install
|
|
# directory, so we must first ensure it exists and is writeable (above) before
|
|
# we can log there
|
|
exec >/dev/null
|
|
case "${CT_LOG_TO_FILE}" in
|
|
y) CT_LOG_FILE="${CT_PREFIX_DIR}/build.log"
|
|
cat "${tmp_log_file}" >>"${CT_LOG_FILE}"
|
|
rm -f "${tmp_log_file}"
|
|
exec >>"${CT_LOG_FILE}"
|
|
;;
|
|
*) rm -f "${tmp_log_file}"
|
|
;;
|
|
esac
|
|
|
|
# Setting up the rest of the environment only if not restarting
|
|
if [ -z "${CT_RESTART}" ]; then
|
|
# Determine build system if not set by the user
|
|
CT_Test "You did not specify the build system. That's OK, I can guess..." -z "${CT_BUILD}"
|
|
CT_BUILD="${CT_BUILD:-$(CT_DoConfigGuess)}"
|
|
CT_BUILD=$(CT_DoConfigSub "${CT_BUILD}")
|
|
|
|
# Arrange paths depending on wether we use sys-root or not.
|
|
if [ "${CT_USE_SYSROOT}" = "y" ]; then
|
|
CT_SYSROOT_DIR="${CT_PREFIX_DIR}/${CT_TARGET}/sys-root"
|
|
CT_HEADERS_DIR="${CT_SYSROOT_DIR}/usr/include"
|
|
BINUTILS_SYSROOT_ARG="--with-sysroot=${CT_SYSROOT_DIR}"
|
|
CC_CORE_SYSROOT_ARG="--with-sysroot=${CT_SYSROOT_DIR}"
|
|
CC_SYSROOT_ARG="--with-sysroot=${CT_SYSROOT_DIR}"
|
|
LIBC_SYSROOT_ARG=""
|
|
# glibc's prefix must be exactly /usr, else --with-sysroot'd gcc will get
|
|
# confused when $sysroot/usr/include is not present.
|
|
# Note: --prefix=/usr is magic!
|
|
# See http://www.gnu.org/software/libc/FAQ.html#s-2.2
|
|
else
|
|
# plain old way. All libraries in prefix/target/lib
|
|
CT_SYSROOT_DIR="${CT_PREFIX_DIR}/${CT_TARGET}"
|
|
CT_HEADERS_DIR="${CT_SYSROOT_DIR}/include"
|
|
# hack! Always use --with-sysroot for binutils.
|
|
# binutils 2.14 and later obey it, older binutils ignore it.
|
|
# Lets you build a working 32->64 bit cross gcc
|
|
BINUTILS_SYSROOT_ARG="--with-sysroot=${CT_SYSROOT_DIR}"
|
|
# Use --with-headers, else final gcc will define disable_glibc while
|
|
# building libgcc, and you'll have no profiling
|
|
CC_CORE_SYSROOT_ARG="--without-headers"
|
|
CC_SYSROOT_ARG="--with-headers=${CT_HEADERS_DIR}"
|
|
LIBC_SYSROOT_ARG="prefix="
|
|
fi
|
|
|
|
# Prepare the 'lib' directories in sysroot, else the ../lib64 hack used by
|
|
# 32 -> 64 bit crosscompilers won't work, and build of final gcc will fail with
|
|
# "ld: cannot open crti.o: No such file or directory"
|
|
mkdir -p "${CT_SYSROOT_DIR}/lib"
|
|
mkdir -p "${CT_SYSROOT_DIR}/usr/lib"
|
|
|
|
# Prevent gcc from installing its libraries outside of the sys-root
|
|
ln -sf "sys-root/lib" "${CT_PREFIX_DIR}/${CT_TARGET}/lib"
|
|
|
|
# Now, in case we're 64 bits, just have lib64/ be a symlink to lib/
|
|
# so as to have all libraries in the same directory (we can do that
|
|
# because we are *not* multilib).
|
|
case "${CT_TARGET}" in
|
|
powerpc64*|ppc64*|x86_64*)
|
|
ln -sf "lib" "${CT_SYSROOT_DIR}/lib64"
|
|
ln -sf "lib" "${CT_SYSROOT_DIR}/usr/lib64"
|
|
ln -sf "sys-root/lib" "${CT_PREFIX_DIR}/${CT_TARGET}/lib64"
|
|
;;
|
|
esac
|
|
|
|
# Canadian-cross are really picky on the way they are built. Tweak the values.
|
|
CT_UNIQ_BUILD=$(echo "${CT_BUILD}" |sed -r -e 's/-/-build_/')
|
|
if [ "${CT_CANADIAN}" = "y" ]; then
|
|
# Arrange so that gcc never, ever think that build system == host system
|
|
CT_CANADIAN_OPT="--build=${CT_UNIQ_BUILD}"
|
|
# We shall have a compiler for this target!
|
|
# Do test here...
|
|
else
|
|
CT_HOST="${CT_BUILD}"
|
|
CT_CANADIAN_OPT="--build=${CT_BUILD}"
|
|
# Add the target toolchain in the path so that we can build the C library
|
|
# Carefully add paths in the order we want them:
|
|
# - first try in ${CT_PREFIX_DIR}/bin
|
|
# - then try in ${CT_CC_CORE_SHARED_PREFIX_DIR}/bin
|
|
# - then try in ${CT_CC_CORE_STATIC_PREFIX_DIR}/bin
|
|
# - fall back to searching user's PATH
|
|
export PATH="${CT_PREFIX_DIR}/bin:${CT_CC_CORE_SHARED_PREFIX_DIR}/bin:${CT_CC_CORE_STATIC_PREFIX_DIR}/bin:${PATH}"
|
|
fi
|
|
|
|
# Modify GCC_HOST to never be equal to $BUILD or $TARGET
|
|
# This strange operation causes gcc to always generate a cross-compiler
|
|
# even if the build machine is the same kind as the host.
|
|
# This is why CC has to be set when doing a canadian cross; you can't find a
|
|
# host compiler by appending -gcc to our whacky $GCC_HOST
|
|
# Kludge: it is reported that the above causes canadian crosses with cygwin
|
|
# hosts to fail, so avoid it just in that one case. It would be cleaner to
|
|
# just move this into the non-canadian case above, but I'm afraid that might
|
|
# cause some configure script somewhere to decide that since build==host, they
|
|
# could run host binaries.
|
|
# (Copied almost as-is from original crosstool):
|
|
case "${CT_KERNEL},${CT_CANADIAN}" in
|
|
cygwin,y) ;;
|
|
*,y) CT_HOST=$(echo "${CT_HOST}" |sed -r -e 's/-/-host_/;');;
|
|
esac
|
|
|
|
# Ah! Recent versions of binutils need some of the build and/or host system
|
|
# (read CT_BUILD and CT_HOST) tools to be accessible (ar is but an example).
|
|
# Do that:
|
|
CT_DoLog DEBUG "Making build system tools available"
|
|
mkdir -p "${CT_PREFIX_DIR}/bin"
|
|
for tool in ar as dlltool ${CT_CC_NATIVE:=gcc} gnatbind gnatmake ld nm ranlib strip windres objcopy objdump; do
|
|
tmp=$(CT_Which ${tool})
|
|
if [ -n "${tmp}" ]; then
|
|
ln -sfv "${tmp}" "${CT_PREFIX_DIR}/bin/${CT_BUILD}-${tool}"
|
|
ln -sfv "${tmp}" "${CT_PREFIX_DIR}/bin/${CT_UNIQ_BUILD}-${tool}"
|
|
ln -sfv "${tmp}" "${CT_PREFIX_DIR}/bin/${CT_HOST}-${tool}"
|
|
fi |CT_DoLog DEBUG
|
|
done
|
|
|
|
# Some makeinfo versions are a pain in [put your most sensible body part here].
|
|
# Go ahead with those, by creating a wrapper that keeps partial files, and that
|
|
# never fails:
|
|
echo -e "#!/bin/sh\n$(CT_Which makeinfo) --force \"\${@}\"\ntrue" >"${CT_PREFIX_DIR}/bin/makeinfo"
|
|
chmod 700 "${CT_PREFIX_DIR}/bin/makeinfo"
|
|
|
|
# Help gcc
|
|
CT_CFLAGS_FOR_HOST=
|
|
[ "${CT_USE_PIPES}" = "y" ] && CT_CFLAGS_FOR_HOST="${CT_CFLAGS_FOR_HOST} -pipe"
|
|
|
|
# Override the configured jobs with what's been given on the command line
|
|
[ -n "${CT_JOBS}" ] && CT_PARALLEL_JOBS="${CT_JOBS}"
|
|
|
|
# Help ./configure scripts go faster
|
|
[ "${CT_CONFIG_SHELL_ASH}" = "y" ] && export CONFIG_SHELL=/bin/ash
|
|
export CONFIG_SHELL
|
|
|
|
# And help make go faster
|
|
PARALLELMFLAGS=
|
|
[ ${CT_PARALLEL_JOBS} -ne 0 ] && PARALLELMFLAGS="${PARALLELMFLAGS} -j${CT_PARALLEL_JOBS}"
|
|
[ ${CT_LOAD} -ne 0 ] && PARALLELMFLAGS="${PARALLELMFLAGS} -l${CT_LOAD}"
|
|
export PARALLELMFLAGS
|
|
|
|
CT_DoStep EXTRA "Dumping internal crosstool-NG configuration"
|
|
CT_DoLog EXTRA "Building a toolchain for:"
|
|
CT_DoLog EXTRA " build = ${CT_BUILD}"
|
|
CT_DoLog EXTRA " host = ${CT_HOST}"
|
|
CT_DoLog EXTRA " target = ${CT_TARGET}"
|
|
set |egrep '^CT_.+=' |sort |CT_DoLog DEBUG
|
|
CT_EndStep
|
|
fi
|
|
|
|
# Include sub-scripts instead of calling them: that way, we do not have to
|
|
# export any variable, nor re-parse the configuration and functions files.
|
|
. "${CT_LIB_DIR}/scripts/build/kernel_${CT_KERNEL}.sh"
|
|
. "${CT_LIB_DIR}/scripts/build/gmp.sh"
|
|
. "${CT_LIB_DIR}/scripts/build/mpfr.sh"
|
|
. "${CT_LIB_DIR}/scripts/build/binutils.sh"
|
|
. "${CT_LIB_DIR}/scripts/build/libc_${CT_LIBC}.sh"
|
|
. "${CT_LIB_DIR}/scripts/build/cc_${CT_CC}.sh"
|
|
. "${CT_LIB_DIR}/scripts/build/debug.sh"
|
|
. "${CT_LIB_DIR}/scripts/build/tools.sh"
|
|
|
|
if [ -z "${CT_RESTART}" ]; then
|
|
CT_DoStep INFO "Retrieving needed toolchain components' tarballs"
|
|
do_kernel_get
|
|
do_gmp_get
|
|
do_mpfr_get
|
|
do_binutils_get
|
|
do_cc_get
|
|
do_libc_get
|
|
do_tools_get
|
|
do_debug_get
|
|
CT_EndStep
|
|
|
|
if [ "${CT_ONLY_DOWNLOAD}" != "y" ]; then
|
|
if [ "${CT_FORCE_EXTRACT}" = "y" ]; then
|
|
mv "${CT_SRC_DIR}" "${CT_SRC_DIR}.force.$$"
|
|
setsid nohup rm -rf "${CT_SRC_DIR}.force.$$" >/dev/null 2>&1
|
|
mkdir -p "${CT_SRC_DIR}"
|
|
fi
|
|
CT_DoStep INFO "Extracting and patching toolchain components"
|
|
do_kernel_extract
|
|
do_gmp_extract
|
|
do_mpfr_extract
|
|
do_binutils_extract
|
|
do_cc_extract
|
|
do_libc_extract
|
|
do_tools_extract
|
|
do_debug_extract
|
|
CT_EndStep
|
|
fi
|
|
fi
|
|
|
|
# Now for the job by itself. Go have a coffee!
|
|
if [ "${CT_ONLY_DOWNLOAD}" != "y" -a "${CT_ONLY_EXTRACT}" != "y" ]; then
|
|
# Because of CT_RESTART, this becomes quite complex
|
|
do_stop=0
|
|
prev_step=
|
|
[ -n "${CT_RESTART}" ] && do_it=0 || do_it=1
|
|
# Aha! CT_STEPS comes from steps.mk!
|
|
for step in ${CT_STEPS}; do
|
|
if [ ${do_it} -eq 0 ]; then
|
|
if [ "${CT_RESTART}" = "${step}" ]; then
|
|
CT_DoLoadState "${step}"
|
|
do_it=1
|
|
do_stop=0
|
|
fi
|
|
else
|
|
CT_DoSaveState ${step}
|
|
if [ ${do_stop} -eq 1 ]; then
|
|
CT_DoLog ERROR "Stopping just after step '${prev_step}', as requested."
|
|
exit 0
|
|
fi
|
|
fi
|
|
if [ ${do_it} -eq 1 ]; then
|
|
do_${step}
|
|
if [ "${CT_STOP}" = "${step}" ]; then
|
|
do_stop=1
|
|
fi
|
|
if [ "${CT_DEBUG_PAUSE_STEPS}" = "y" ]; then
|
|
CT_DoPause "Step '${step}' finished"
|
|
fi
|
|
fi
|
|
prev_step="${step}"
|
|
done
|
|
|
|
CT_DoLog INFO "================================================================="
|
|
|
|
CT_DoLog DEBUG "Removing access to the build system tools"
|
|
find "${CT_PREFIX_DIR}/bin" -name "${CT_BUILD}-"'*' -exec rm -fv {} \; |CT_DoLog DEBUG
|
|
find "${CT_PREFIX_DIR}/bin" -name "${CT_UNIQ_BUILD}-"'*' -exec rm -fv {} \; |CT_DoLog DEBUG
|
|
find "${CT_PREFIX_DIR}/bin" -name "${CT_HOST}-"'*' -exec rm -fv {} \; |CT_DoLog DEBUG
|
|
rm -fv "${CT_PREFIX_DIR}/bin/makeinfo" |CT_DoLog DEBUG
|
|
|
|
# Install the /populator/
|
|
CT_DoLog EXTRA "Installing the populate helper"
|
|
sed -r -e 's|@@CT_TARGET@@|'"${CT_TARGET}"'|g;' \
|
|
"${CT_LIB_DIR}/tools/populate.in" \
|
|
>"${CT_PREFIX_DIR}/bin/${CT_TARGET}-populate"
|
|
chmod 755 "${CT_PREFIX_DIR}/bin/${CT_TARGET}-populate"
|
|
|
|
# Create the aliases to the target tools
|
|
CT_DoLog EXTRA "Creating toolchain aliases"
|
|
CT_Pushd "${CT_PREFIX_DIR}/bin"
|
|
for t in "${CT_TARGET}-"*; do
|
|
if [ -n "${CT_TARGET_ALIAS}" ]; then
|
|
_t=$(echo "$t" |sed -r -e 's/^'"${CT_TARGET}"'-/'"${CT_TARGET_ALIAS}"'-/;')
|
|
ln -sv "${t}" "${_t}" 2>&1
|
|
fi
|
|
if [ -n "${CT_TARGET_ALIAS_SED_EXPR}" ]; then
|
|
_t=$(echo "$t" |sed -r -e "${CT_TARGET_ALIAS_SED_EXPR}")
|
|
ln -sv "${t}" "${_t}" 2>&1
|
|
fi
|
|
done |CT_DoLog ALL
|
|
CT_Popd
|
|
|
|
# Remove the generated documentation files
|
|
if [ "${CT_REMOVE_DOCS}" = "y" ]; then
|
|
CT_DoLog INFO "Removing installed documentation"
|
|
rm -rf "${CT_PREFIX_DIR}/"{,usr/}{man,info}
|
|
rm -rf "${CT_SYSROOT_DIR}/"{,usr/}{man,info}
|
|
rm -rf "${CT_DEBUG_INSTALL_DIR}/"{,usr/}{man,info}
|
|
fi
|
|
fi
|
|
|
|
CT_DoEnd INFO
|
|
|
|
if [ "${CT_LOG_FILE_COMPRESS}" = y ]; then
|
|
CT_DoLog EXTRA "Compressing log file"
|
|
exec >/dev/null
|
|
bzip2 -9 "${CT_LOG_FILE}"
|
|
fi
|
|
|
|
if [ "${CT_INSTALL_DIR_RO}" = "y" ]; then
|
|
# OK, now we're done, set the toolchain read-only
|
|
# Don't log, the log file may become read-only any moment...
|
|
chmod -R a-w "${CT_INSTALL_DIR}" >/dev/null 2>&1
|
|
fi
|
|
|
|
trap - EXIT
|