mirror of
https://github.com/crosstool-ng/crosstool-ng.git
synced 2025-01-26 22:29:19 +00:00
2e6a56d1cc
This changeset adds official patches published on mpfr website. Signed-off-by: Kirill K. Smirnov <kirill.k.smirnov@gmail.com>
1118 lines
58 KiB
Diff
1118 lines
58 KiB
Diff
diff -Naurd mpfr-3.1.3-a/PATCHES mpfr-3.1.3-b/PATCHES
|
||
--- mpfr-3.1.3-a/PATCHES 2015-07-02 10:49:23.950112879 +0000
|
||
+++ mpfr-3.1.3-b/PATCHES 2015-07-02 10:49:24.042113845 +0000
|
||
@@ -0,0 +1 @@
|
||
+lngamma-and-doc
|
||
diff -Naurd mpfr-3.1.3-a/VERSION mpfr-3.1.3-b/VERSION
|
||
--- mpfr-3.1.3-a/VERSION 2015-06-19 19:55:09.000000000 +0000
|
||
+++ mpfr-3.1.3-b/VERSION 2015-07-02 10:49:24.042113845 +0000
|
||
@@ -1 +1 @@
|
||
-3.1.3
|
||
+3.1.3-p1
|
||
diff -Naurd mpfr-3.1.3-a/doc/mpfr.texi mpfr-3.1.3-b/doc/mpfr.texi
|
||
--- mpfr-3.1.3-a/doc/mpfr.texi 2015-06-19 19:55:11.000000000 +0000
|
||
+++ mpfr-3.1.3-b/doc/mpfr.texi 2015-07-02 10:49:24.018113593 +0000
|
||
@@ -810,13 +810,17 @@
|
||
When the input point is in the closure of the domain of the mathematical
|
||
function and an input argument is +0 (resp.@: @minus{}0), one considers
|
||
the limit when the corresponding argument approaches 0 from above
|
||
-(resp.@: below). If the limit is not defined (e.g., @code{mpfr_log} on
|
||
-@minus{}0), the behavior is specified in the description of the MPFR function.
|
||
+(resp.@: below), if possible. If the limit is not defined (e.g.,
|
||
+@code{mpfr_sqrt} and @code{mpfr_log} on @minus{}0), the behavior is
|
||
+specified in the description of the MPFR function, but must be consistent
|
||
+with the rule from the above paragraph (e.g., @code{mpfr_log} on @pom{}0
|
||
+gives @minus{}Inf).
|
||
|
||
When the result is equal to 0, its sign is determined by considering the
|
||
limit as if the input point were not in the domain: If one approaches 0
|
||
from above (resp.@: below), the result is +0 (resp.@: @minus{}0);
|
||
-for example, @code{mpfr_sin} on +0 gives +0.
|
||
+for example, @code{mpfr_sin} on @minus{}0 gives @minus{}0 and
|
||
+@code{mpfr_acos} on 1 gives +0 (in all rounding modes).
|
||
In the other cases, the sign is specified in the description of the MPFR
|
||
function; for example @code{mpfr_max} on @minus{}0 and +0 gives +0.
|
||
|
||
@@ -832,8 +836,8 @@
|
||
@c that advantages in practice), like for any bug fix.
|
||
Example: @code{mpfr_hypot} on (NaN,0) gives NaN, but @code{mpfr_hypot}
|
||
on (NaN,+Inf) gives +Inf (as specified in @ref{Special Functions}),
|
||
-since for any finite input @var{x}, @code{mpfr_hypot} on (@var{x},+Inf)
|
||
-gives +Inf.
|
||
+since for any finite or infinite input @var{x}, @code{mpfr_hypot} on
|
||
+(@var{x},+Inf) gives +Inf.
|
||
|
||
@node Exceptions, Memory Handling, Floating-Point Values on Special Numbers, MPFR Basics
|
||
@comment node-name, next, previous, up
|
||
@@ -1581,7 +1585,8 @@
|
||
@deftypefunx int mpfr_add_z (mpfr_t @var{rop}, mpfr_t @var{op1}, mpz_t @var{op2}, mpfr_rnd_t @var{rnd})
|
||
@deftypefunx int mpfr_add_q (mpfr_t @var{rop}, mpfr_t @var{op1}, mpq_t @var{op2}, mpfr_rnd_t @var{rnd})
|
||
Set @var{rop} to @math{@var{op1} + @var{op2}} rounded in the direction
|
||
-@var{rnd}. For types having no signed zero, it is considered unsigned
|
||
+@var{rnd}. The IEEE-754 rules are used, in particular for signed zeros.
|
||
+But for types having no signed zeros, 0 is considered unsigned
|
||
(i.e., (+0) + 0 = (+0) and (@minus{}0) + 0 = (@minus{}0)).
|
||
The @code{mpfr_add_d} function assumes that the radix of the @code{double} type
|
||
is a power of 2, with a precision at most that declared by the C implementation
|
||
@@ -1599,7 +1604,8 @@
|
||
@deftypefunx int mpfr_sub_z (mpfr_t @var{rop}, mpfr_t @var{op1}, mpz_t @var{op2}, mpfr_rnd_t @var{rnd})
|
||
@deftypefunx int mpfr_sub_q (mpfr_t @var{rop}, mpfr_t @var{op1}, mpq_t @var{op2}, mpfr_rnd_t @var{rnd})
|
||
Set @var{rop} to @math{@var{op1} - @var{op2}} rounded in the direction
|
||
-@var{rnd}. For types having no signed zero, it is considered unsigned
|
||
+@var{rnd}. The IEEE-754 rules are used, in particular for signed zeros.
|
||
+But for types having no signed zeros, 0 is considered unsigned
|
||
(i.e., (+0) @minus{} 0 = (+0), (@minus{}0) @minus{} 0 = (@minus{}0),
|
||
0 @minus{} (+0) = (@minus{}0) and 0 @minus{} (@minus{}0) = (+0)).
|
||
The same restrictions than for @code{mpfr_add_d} apply to @code{mpfr_d_sub}
|
||
@@ -1615,7 +1621,7 @@
|
||
Set @var{rop} to @math{@var{op1} @GMPtimes{} @var{op2}} rounded in the
|
||
direction @var{rnd}.
|
||
When a result is zero, its sign is the product of the signs of the operands
|
||
-(for types having no signed zero, it is considered positive).
|
||
+(for types having no signed zeros, 0 is considered positive).
|
||
The same restrictions than for @code{mpfr_add_d} apply to @code{mpfr_mul_d}.
|
||
@end deftypefun
|
||
|
||
@@ -1635,7 +1641,7 @@
|
||
@deftypefunx int mpfr_div_q (mpfr_t @var{rop}, mpfr_t @var{op1}, mpq_t @var{op2}, mpfr_rnd_t @var{rnd})
|
||
Set @var{rop} to @math{@var{op1}/@var{op2}} rounded in the direction @var{rnd}.
|
||
When a result is zero, its sign is the product of the signs of the operands
|
||
-(for types having no signed zero, it is considered positive).
|
||
+(for types having no signed zeros, 0 is considered positive).
|
||
The same restrictions than for @code{mpfr_add_d} apply to @code{mpfr_d_div}
|
||
and @code{mpfr_div_d}.
|
||
@end deftypefun
|
||
@@ -1643,15 +1649,18 @@
|
||
@deftypefun int mpfr_sqrt (mpfr_t @var{rop}, mpfr_t @var{op}, mpfr_rnd_t @var{rnd})
|
||
@deftypefunx int mpfr_sqrt_ui (mpfr_t @var{rop}, unsigned long int @var{op}, mpfr_rnd_t @var{rnd})
|
||
Set @var{rop} to @m{\sqrt{@var{op}}, the square root of @var{op}}
|
||
-rounded in the direction @var{rnd} (set @var{rop} to @minus{}0 if @var{op} is
|
||
-@minus{}0, to be consistent with the IEEE 754 standard).
|
||
+rounded in the direction @var{rnd}. Set @var{rop} to @minus{}0 if
|
||
+@var{op} is @minus{}0, to be consistent with the IEEE 754 standard.
|
||
Set @var{rop} to NaN if @var{op} is negative.
|
||
@end deftypefun
|
||
|
||
@deftypefun int mpfr_rec_sqrt (mpfr_t @var{rop}, mpfr_t @var{op}, mpfr_rnd_t @var{rnd})
|
||
Set @var{rop} to @m{1/\sqrt{@var{op}}, the reciprocal square root of @var{op}}
|
||
-rounded in the direction @var{rnd}. Set @var{rop} to +Inf if @var{op} is
|
||
-@pom{}0, +0 if @var{op} is +Inf, and NaN if @var{op} is negative.
|
||
+rounded in the direction @var{rnd}. Set @var{rop} to +Inf if @var{op} is
|
||
+@pom{}0, +0 if @var{op} is +Inf, and NaN if @var{op} is negative. Warning!
|
||
+Therefore the result on @minus{}0 is different from the one of the rSqrt
|
||
+function recommended by the IEEE 754-2008 standard (Section 9.2.1), which
|
||
+is @minus{}Inf instead of +Inf.
|
||
@end deftypefun
|
||
|
||
@deftypefun int mpfr_cbrt (mpfr_t @var{rop}, mpfr_t @var{op}, mpfr_rnd_t @var{rnd})
|
||
@@ -1832,7 +1841,9 @@
|
||
@m{\log_2 @var{op}, log2(@var{op})} or
|
||
@m{\log_{10} @var{op}, log10(@var{op})}, respectively,
|
||
rounded in the direction @var{rnd}.
|
||
-Set @var{rop} to @minus{}Inf if @var{op} is @minus{}0
|
||
+Set @var{rop} to +0 if @var{op} is 1 (in all rounding modes),
|
||
+for consistency with the ISO C99 and IEEE 754-2008 standards.
|
||
+Set @var{rop} to @minus{}Inf if @var{op} is @pom{}0
|
||
(i.e., the sign of the zero has no influence on the result).
|
||
@end deftypefun
|
||
|
||
@@ -2003,8 +2014,11 @@
|
||
@deftypefun int mpfr_lngamma (mpfr_t @var{rop}, mpfr_t @var{op}, mpfr_rnd_t @var{rnd})
|
||
Set @var{rop} to the value of the logarithm of the Gamma function on @var{op},
|
||
rounded in the direction @var{rnd}.
|
||
-When @math{@minus{}2@var{k}@minus{}1 @le{} @var{op} @le{} @minus{}2@var{k}},
|
||
-@var{k} being a non-negative integer, @var{rop} is set to NaN.
|
||
+When @var{op} is 1 or 2, set @var{rop} to +0 (in all rounding modes).
|
||
+When @var{op} is an infinity or a nonpositive integer, set @var{rop} to +Inf,
|
||
+following the general rules on special values.
|
||
+When @math{@minus{}2@var{k}@minus{}1 < @var{op} < @minus{}2@var{k}},
|
||
+@var{k} being a nonnegative integer, set @var{rop} to NaN@.
|
||
See also @code{mpfr_lgamma}.
|
||
@end deftypefun
|
||
|
||
@@ -2012,10 +2026,11 @@
|
||
Set @var{rop} to the value of the logarithm of the absolute value of the
|
||
Gamma function on @var{op}, rounded in the direction @var{rnd}. The sign
|
||
(1 or @minus{}1) of Gamma(@var{op}) is returned in the object pointed to
|
||
-by @var{signp}. When @var{op} is an infinity or a non-positive integer, set
|
||
-@var{rop} to +Inf. When @var{op} is NaN, @minus{}Inf or a negative integer,
|
||
-*@var{signp} is undefined, and when @var{op} is @pom{}0, *@var{signp} is
|
||
-the sign of the zero.
|
||
+by @var{signp}.
|
||
+When @var{op} is 1 or 2, set @var{rop} to +0 (in all rounding modes).
|
||
+When @var{op} is an infinity or a nonpositive integer, set @var{rop} to +Inf.
|
||
+When @var{op} is NaN, @minus{}Inf or a negative integer, *@var{signp} is
|
||
+undefined, and when @var{op} is @pom{}0, *@var{signp} is the sign of the zero.
|
||
@end deftypefun
|
||
|
||
@deftypefun int mpfr_digamma (mpfr_t @var{rop}, mpfr_t @var{op}, mpfr_rnd_t @var{rnd})
|
||
@@ -2064,7 +2079,10 @@
|
||
@deftypefunx int mpfr_fms (mpfr_t @var{rop}, mpfr_t @var{op1}, mpfr_t @var{op2}, mpfr_t @var{op3}, mpfr_rnd_t @var{rnd})
|
||
Set @var{rop} to @math{(@var{op1} @GMPtimes{} @var{op2}) + @var{op3}}
|
||
(resp.@: @math{(@var{op1} @GMPtimes{} @var{op2}) - @var{op3}})
|
||
-rounded in the direction @var{rnd}.
|
||
+rounded in the direction @var{rnd}. Concerning special values (signed zeros,
|
||
+infinities, NaN), these functions behave like a multiplication followed by a
|
||
+separate addition or subtraction. That is, the fused operation matters only
|
||
+for rounding.
|
||
@end deftypefun
|
||
|
||
@deftypefun int mpfr_agm (mpfr_t @var{rop}, mpfr_t @var{op1}, mpfr_t @var{op2}, mpfr_rnd_t @var{rnd})
|
||
@@ -2089,8 +2107,8 @@
|
||
i.e., $\sqrt{x^2+y^2}$,
|
||
@end tex
|
||
rounded in the direction @var{rnd}.
|
||
-Special values are handled as described in Section F.9.4.3 of
|
||
-the ISO C99 and IEEE 754-2008 standards:
|
||
+Special values are handled as described in the ISO C99 (Section F.9.4.3)
|
||
+and IEEE 754-2008 (Section 9.2.1) standards:
|
||
If @var{x} or @var{y} is an infinity, then +Inf is returned in @var{rop},
|
||
even if the other number is NaN.
|
||
@end deftypefun
|
||
diff -Naurd mpfr-3.1.3-a/doc/mpfr.info mpfr-3.1.3-b/doc/mpfr.info
|
||
--- mpfr-3.1.3-a/doc/mpfr.info 2015-06-19 19:55:53.000000000 +0000
|
||
+++ mpfr-3.1.3-b/doc/mpfr.info 2015-07-02 10:49:38.718267817 +0000
|
||
@@ -1,4 +1,4 @@
|
||
-This is mpfr.info, produced by makeinfo version 5.2 from mpfr.texi.
|
||
+This is mpfr.info, produced by makeinfo version 6.0 from mpfr.texi.
|
||
|
||
This manual documents how to install and use the Multiple Precision
|
||
Floating-Point Reliable Library, version 3.1.3.
|
||
@@ -55,7 +55,7 @@
|
||
MPFR Copying Conditions
|
||
***********************
|
||
|
||
-The GNU MPFR library (or MPFR for short) is "free"; this means that
|
||
+The GNU MPFR library (or MPFR for short) is “free”; this means that
|
||
everyone is free to use it and free to redistribute it on a free basis.
|
||
The library is not in the public domain; it is copyrighted and there are
|
||
restrictions on its distribution, but these restrictions are designed to
|
||
@@ -418,7 +418,7 @@
|
||
4.2 Nomenclature and Types
|
||
==========================
|
||
|
||
-A "floating-point number", or "float" for short, is an arbitrary
|
||
+A “floating-point number”, or “float” for short, is an arbitrary
|
||
precision significand (also called mantissa) with a limited precision
|
||
exponent. The C data type for such objects is ‘mpfr_t’ (internally
|
||
defined as a one-element array of a structure, and ‘mpfr_ptr’ is the C
|
||
@@ -432,7 +432,7 @@
|
||
to the other functions supported by MPFR. Unless documented otherwise,
|
||
the sign bit of a NaN is unspecified.
|
||
|
||
-The "precision" is the number of bits used to represent the significand
|
||
+The “precision” is the number of bits used to represent the significand
|
||
of a floating-point number; the corresponding C data type is
|
||
‘mpfr_prec_t’. The precision can be any integer between ‘MPFR_PREC_MIN’
|
||
and ‘MPFR_PREC_MAX’. In the current implementation, ‘MPFR_PREC_MIN’ is
|
||
@@ -446,7 +446,7 @@
|
||
may abort, crash or have undefined behavior (depending on your C
|
||
implementation).
|
||
|
||
-The "rounding mode" specifies the way to round the result of a
|
||
+The “rounding mode” specifies the way to round the result of a
|
||
floating-point operation, in case the exact result can not be
|
||
represented exactly in the destination significand; the corresponding C
|
||
data type is ‘mpfr_rnd_t’.
|
||
@@ -499,14 +499,14 @@
|
||
representable numbers, it is rounded to the one with the least
|
||
significant bit set to zero. For example, the number 2.5, which is
|
||
represented by (10.1) in binary, is rounded to (10.0)=2 with a precision
|
||
-of two bits, and not to (11.0)=3. This rule avoids the "drift"
|
||
+of two bits, and not to (11.0)=3. This rule avoids the “drift”
|
||
phenomenon mentioned by Knuth in volume 2 of The Art of Computer
|
||
Programming (Section 4.2.2).
|
||
|
||
Most MPFR functions take as first argument the destination variable,
|
||
as second and following arguments the input variables, as last argument
|
||
a rounding mode, and have a return value of type ‘int’, called the
|
||
-"ternary value". The value stored in the destination variable is
|
||
+“ternary value”. The value stored in the destination variable is
|
||
correctly rounded, i.e., MPFR behaves as if it computed the result with
|
||
an infinite precision, then rounded it to the precision of this
|
||
variable. The input variables are regarded as exact (in particular,
|
||
@@ -572,15 +572,18 @@
|
||
When the input point is in the closure of the domain of the
|
||
mathematical function and an input argument is +0 (resp. −0), one
|
||
considers the limit when the corresponding argument approaches 0 from
|
||
-above (resp. below). If the limit is not defined (e.g., ‘mpfr_log’ on
|
||
-−0), the behavior is specified in the description of the MPFR function.
|
||
+above (resp. below), if possible. If the limit is not defined (e.g.,
|
||
+‘mpfr_sqrt’ and ‘mpfr_log’ on −0), the behavior is specified in the
|
||
+description of the MPFR function, but must be consistent with the rule
|
||
+from the above paragraph (e.g., ‘mpfr_log’ on ±0 gives −Inf).
|
||
|
||
When the result is equal to 0, its sign is determined by considering
|
||
the limit as if the input point were not in the domain: If one
|
||
approaches 0 from above (resp. below), the result is +0 (resp. −0); for
|
||
-example, ‘mpfr_sin’ on +0 gives +0. In the other cases, the sign is
|
||
-specified in the description of the MPFR function; for example
|
||
-‘mpfr_max’ on −0 and +0 gives +0.
|
||
+example, ‘mpfr_sin’ on −0 gives −0 and ‘mpfr_acos’ on 1 gives +0 (in all
|
||
+rounding modes). In the other cases, the sign is specified in the
|
||
+description of the MPFR function; for example ‘mpfr_max’ on −0 and +0
|
||
+gives +0.
|
||
|
||
When the input point is not in the closure of the domain of the
|
||
function, the result is NaN. Example: ‘mpfr_sqrt’ on −17 gives NaN.
|
||
@@ -590,8 +593,8 @@
|
||
numbers; such a case is always explicitly specified in *note MPFR
|
||
Interface::. Example: ‘mpfr_hypot’ on (NaN,0) gives NaN, but
|
||
‘mpfr_hypot’ on (NaN,+Inf) gives +Inf (as specified in *note Special
|
||
-Functions::), since for any finite input X, ‘mpfr_hypot’ on (X,+Inf)
|
||
-gives +Inf.
|
||
+Functions::), since for any finite or infinite input X, ‘mpfr_hypot’ on
|
||
+(X,+Inf) gives +Inf.
|
||
|
||
|
||
File: mpfr.info, Node: Exceptions, Next: Memory Handling, Prev: Floating-Point Values on Special Numbers, Up: MPFR Basics
|
||
@@ -1253,8 +1256,9 @@
|
||
mpfr_rnd_t RND)
|
||
-- Function: int mpfr_add_q (mpfr_t ROP, mpfr_t OP1, mpq_t OP2,
|
||
mpfr_rnd_t RND)
|
||
- Set ROP to OP1 + OP2 rounded in the direction RND. For types
|
||
- having no signed zero, it is considered unsigned (i.e., (+0) + 0 =
|
||
+ Set ROP to OP1 + OP2 rounded in the direction RND. The IEEE-754
|
||
+ rules are used, in particular for signed zeros. But for types
|
||
+ having no signed zeros, 0 is considered unsigned (i.e., (+0) + 0 =
|
||
(+0) and (−0) + 0 = (−0)). The ‘mpfr_add_d’ function assumes that
|
||
the radix of the ‘double’ type is a power of 2, with a precision at
|
||
most that declared by the C implementation (macro
|
||
@@ -1280,8 +1284,9 @@
|
||
mpfr_rnd_t RND)
|
||
-- Function: int mpfr_sub_q (mpfr_t ROP, mpfr_t OP1, mpq_t OP2,
|
||
mpfr_rnd_t RND)
|
||
- Set ROP to OP1 - OP2 rounded in the direction RND. For types
|
||
- having no signed zero, it is considered unsigned (i.e., (+0) − 0 =
|
||
+ Set ROP to OP1 - OP2 rounded in the direction RND. The IEEE-754
|
||
+ rules are used, in particular for signed zeros. But for types
|
||
+ having no signed zeros, 0 is considered unsigned (i.e., (+0) − 0 =
|
||
(+0), (−0) − 0 = (−0), 0 − (+0) = (−0) and 0 − (−0) = (+0)). The
|
||
same restrictions than for ‘mpfr_add_d’ apply to ‘mpfr_d_sub’ and
|
||
‘mpfr_sub_d’.
|
||
@@ -1300,7 +1305,7 @@
|
||
mpfr_rnd_t RND)
|
||
Set ROP to OP1 times OP2 rounded in the direction RND. When a
|
||
result is zero, its sign is the product of the signs of the
|
||
- operands (for types having no signed zero, it is considered
|
||
+ operands (for types having no signed zeros, 0 is considered
|
||
positive). The same restrictions than for ‘mpfr_add_d’ apply to
|
||
‘mpfr_mul_d’.
|
||
|
||
@@ -1327,21 +1332,24 @@
|
||
mpfr_rnd_t RND)
|
||
Set ROP to OP1/OP2 rounded in the direction RND. When a result is
|
||
zero, its sign is the product of the signs of the operands (for
|
||
- types having no signed zero, it is considered positive). The same
|
||
+ types having no signed zeros, 0 is considered positive). The same
|
||
restrictions than for ‘mpfr_add_d’ apply to ‘mpfr_d_div’ and
|
||
‘mpfr_div_d’.
|
||
|
||
-- Function: int mpfr_sqrt (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
|
||
-- Function: int mpfr_sqrt_ui (mpfr_t ROP, unsigned long int OP,
|
||
mpfr_rnd_t RND)
|
||
- Set ROP to the square root of OP rounded in the direction RND (set
|
||
- ROP to −0 if OP is −0, to be consistent with the IEEE 754
|
||
- standard). Set ROP to NaN if OP is negative.
|
||
+ Set ROP to the square root of OP rounded in the direction RND. Set
|
||
+ ROP to −0 if OP is −0, to be consistent with the IEEE 754 standard.
|
||
+ Set ROP to NaN if OP is negative.
|
||
|
||
-- Function: int mpfr_rec_sqrt (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
|
||
Set ROP to the reciprocal square root of OP rounded in the
|
||
direction RND. Set ROP to +Inf if OP is ±0, +0 if OP is +Inf, and
|
||
- NaN if OP is negative.
|
||
+ NaN if OP is negative. Warning! Therefore the result on −0 is
|
||
+ different from the one of the rSqrt function recommended by the
|
||
+ IEEE 754-2008 standard (Section 9.2.1), which is −Inf instead of
|
||
+ +Inf.
|
||
|
||
-- Function: int mpfr_cbrt (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
|
||
-- Function: int mpfr_root (mpfr_t ROP, mpfr_t OP, unsigned long int K,
|
||
@@ -1515,8 +1523,10 @@
|
||
-- Function: int mpfr_log2 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
|
||
-- Function: int mpfr_log10 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
|
||
Set ROP to the natural logarithm of OP, log2(OP) or log10(OP),
|
||
- respectively, rounded in the direction RND. Set ROP to −Inf if OP
|
||
- is −0 (i.e., the sign of the zero has no influence on the result).
|
||
+ respectively, rounded in the direction RND. Set ROP to +0 if OP is
|
||
+ 1 (in all rounding modes), for consistency with the ISO C99 and
|
||
+ IEEE 754-2008 standards. Set ROP to −Inf if OP is ±0 (i.e., the
|
||
+ sign of the zero has no influence on the result).
|
||
|
||
-- Function: int mpfr_exp (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
|
||
-- Function: int mpfr_exp2 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
|
||
@@ -1649,17 +1659,21 @@
|
||
|
||
-- Function: int mpfr_lngamma (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
|
||
Set ROP to the value of the logarithm of the Gamma function on OP,
|
||
- rounded in the direction RND. When −2K−1 <= OP <= −2K, K being a
|
||
- non-negative integer, ROP is set to NaN. See also ‘mpfr_lgamma’.
|
||
+ rounded in the direction RND. When OP is 1 or 2, set ROP to +0 (in
|
||
+ all rounding modes). When OP is an infinity or a nonpositive
|
||
+ integer, set ROP to +Inf, following the general rules on special
|
||
+ values. When −2K−1 < OP < −2K, K being a nonnegative integer, set
|
||
+ ROP to NaN. See also ‘mpfr_lgamma’.
|
||
|
||
-- Function: int mpfr_lgamma (mpfr_t ROP, int *SIGNP, mpfr_t OP,
|
||
mpfr_rnd_t RND)
|
||
Set ROP to the value of the logarithm of the absolute value of the
|
||
Gamma function on OP, rounded in the direction RND. The sign (1 or
|
||
−1) of Gamma(OP) is returned in the object pointed to by SIGNP.
|
||
- When OP is an infinity or a non-positive integer, set ROP to +Inf.
|
||
- When OP is NaN, −Inf or a negative integer, *SIGNP is undefined,
|
||
- and when OP is ±0, *SIGNP is the sign of the zero.
|
||
+ When OP is 1 or 2, set ROP to +0 (in all rounding modes). When OP
|
||
+ is an infinity or a nonpositive integer, set ROP to +Inf. When OP
|
||
+ is NaN, −Inf or a negative integer, *SIGNP is undefined, and when
|
||
+ OP is ±0, *SIGNP is the sign of the zero.
|
||
|
||
-- Function: int mpfr_digamma (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
|
||
Set ROP to the value of the Digamma (sometimes also called Psi)
|
||
@@ -1703,7 +1717,10 @@
|
||
-- Function: int mpfr_fms (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2, mpfr_t
|
||
OP3, mpfr_rnd_t RND)
|
||
Set ROP to (OP1 times OP2) + OP3 (resp. (OP1 times OP2) - OP3)
|
||
- rounded in the direction RND.
|
||
+ rounded in the direction RND. Concerning special values (signed
|
||
+ zeros, infinities, NaN), these functions behave like a
|
||
+ multiplication followed by a separate addition or subtraction.
|
||
+ That is, the fused operation matters only for rounding.
|
||
|
||
-- Function: int mpfr_agm (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2,
|
||
mpfr_rnd_t RND)
|
||
@@ -1717,9 +1734,10 @@
|
||
RND)
|
||
Set ROP to the Euclidean norm of X and Y, i.e., the square root of
|
||
the sum of the squares of X and Y, rounded in the direction RND.
|
||
- Special values are handled as described in Section F.9.4.3 of the
|
||
- ISO C99 and IEEE 754-2008 standards: If X or Y is an infinity, then
|
||
- +Inf is returned in ROP, even if the other number is NaN.
|
||
+ Special values are handled as described in the ISO C99 (Section
|
||
+ F.9.4.3) and IEEE 754-2008 (Section 9.2.1) standards: If X or Y is
|
||
+ an infinity, then +Inf is returned in ROP, even if the other number
|
||
+ is NaN.
|
||
|
||
-- Function: int mpfr_ai (mpfr_t ROP, mpfr_t X, mpfr_rnd_t RND)
|
||
Set ROP to the value of the Airy function Ai on X, rounded in the
|
||
@@ -2670,7 +2688,7 @@
|
||
5.16 Internals
|
||
==============
|
||
|
||
-A "limb" means the part of a multi-precision number that fits in a
|
||
+A “limb” means the part of a multi-precision number that fits in a
|
||
single word. Usually a limb contains 32 or 64 bits. The C data type
|
||
for a limb is ‘mp_limb_t’.
|
||
|
||
@@ -3140,7 +3158,7 @@
|
||
0. PREAMBLE
|
||
|
||
The purpose of this License is to make a manual, textbook, or other
|
||
- functional and useful document "free" in the sense of freedom: to
|
||
+ functional and useful document “free” in the sense of freedom: to
|
||
assure everyone the effective freedom to copy and redistribute it,
|
||
with or without modifying it, either commercially or
|
||
noncommercially. Secondarily, this License preserves for the
|
||
@@ -3655,9 +3673,9 @@
|
||
* Menu:
|
||
|
||
* mpfr_abs: Basic Arithmetic Functions.
|
||
- (line 160)
|
||
-* mpfr_acos: Special Functions. (line 51)
|
||
-* mpfr_acosh: Special Functions. (line 115)
|
||
+ (line 165)
|
||
+* mpfr_acos: Special Functions. (line 53)
|
||
+* mpfr_acosh: Special Functions. (line 117)
|
||
* mpfr_add: Basic Arithmetic Functions.
|
||
(line 6)
|
||
* mpfr_add_d: Basic Arithmetic Functions.
|
||
@@ -3670,15 +3688,15 @@
|
||
(line 8)
|
||
* mpfr_add_z: Basic Arithmetic Functions.
|
||
(line 14)
|
||
-* mpfr_agm: Special Functions. (line 210)
|
||
-* mpfr_ai: Special Functions. (line 226)
|
||
-* mpfr_asin: Special Functions. (line 52)
|
||
-* mpfr_asinh: Special Functions. (line 116)
|
||
+* mpfr_agm: Special Functions. (line 219)
|
||
+* mpfr_ai: Special Functions. (line 236)
|
||
+* mpfr_asin: Special Functions. (line 54)
|
||
+* mpfr_asinh: Special Functions. (line 118)
|
||
* mpfr_asprintf: Formatted Output Functions.
|
||
(line 193)
|
||
-* mpfr_atan: Special Functions. (line 53)
|
||
-* mpfr_atan2: Special Functions. (line 63)
|
||
-* mpfr_atanh: Special Functions. (line 117)
|
||
+* mpfr_atan: Special Functions. (line 55)
|
||
+* mpfr_atan2: Special Functions. (line 65)
|
||
+* mpfr_atanh: Special Functions. (line 119)
|
||
* mpfr_buildopt_decimal_p: Miscellaneous Functions.
|
||
(line 162)
|
||
* mpfr_buildopt_gmpinternals_p: Miscellaneous Functions.
|
||
@@ -3690,7 +3708,7 @@
|
||
* mpfr_can_round: Rounding Related Functions.
|
||
(line 39)
|
||
* mpfr_cbrt: Basic Arithmetic Functions.
|
||
- (line 108)
|
||
+ (line 113)
|
||
* mpfr_ceil: Integer Related Functions.
|
||
(line 7)
|
||
* mpfr_check_range: Exception Related Functions.
|
||
@@ -3735,18 +3753,18 @@
|
||
(line 27)
|
||
* mpfr_cmp_z: Comparison Functions.
|
||
(line 11)
|
||
-* mpfr_const_catalan: Special Functions. (line 237)
|
||
-* mpfr_const_euler: Special Functions. (line 236)
|
||
-* mpfr_const_log2: Special Functions. (line 234)
|
||
-* mpfr_const_pi: Special Functions. (line 235)
|
||
+* mpfr_const_catalan: Special Functions. (line 247)
|
||
+* mpfr_const_euler: Special Functions. (line 246)
|
||
+* mpfr_const_log2: Special Functions. (line 244)
|
||
+* mpfr_const_pi: Special Functions. (line 245)
|
||
* mpfr_copysign: Miscellaneous Functions.
|
||
(line 109)
|
||
-* mpfr_cos: Special Functions. (line 29)
|
||
-* mpfr_cosh: Special Functions. (line 95)
|
||
-* mpfr_cot: Special Functions. (line 47)
|
||
-* mpfr_coth: Special Functions. (line 111)
|
||
-* mpfr_csc: Special Functions. (line 46)
|
||
-* mpfr_csch: Special Functions. (line 110)
|
||
+* mpfr_cos: Special Functions. (line 31)
|
||
+* mpfr_cosh: Special Functions. (line 97)
|
||
+* mpfr_cot: Special Functions. (line 49)
|
||
+* mpfr_coth: Special Functions. (line 113)
|
||
+* mpfr_csc: Special Functions. (line 48)
|
||
+* mpfr_csch: Special Functions. (line 112)
|
||
* mpfr_custom_get_exp: Custom Interface. (line 75)
|
||
* mpfr_custom_get_kind: Custom Interface. (line 65)
|
||
* mpfr_custom_get_significand: Custom Interface. (line 70)
|
||
@@ -3756,47 +3774,47 @@
|
||
* mpfr_custom_move: Custom Interface. (line 82)
|
||
* MPFR_DECL_INIT: Initialization Functions.
|
||
(line 74)
|
||
-* mpfr_digamma: Special Functions. (line 166)
|
||
+* mpfr_digamma: Special Functions. (line 172)
|
||
* mpfr_dim: Basic Arithmetic Functions.
|
||
- (line 166)
|
||
+ (line 171)
|
||
* mpfr_div: Basic Arithmetic Functions.
|
||
- (line 72)
|
||
+ (line 74)
|
||
* mpfr_divby0_p: Exception Related Functions.
|
||
(line 134)
|
||
* mpfr_div_2exp: Compatibility with MPF.
|
||
(line 49)
|
||
* mpfr_div_2si: Basic Arithmetic Functions.
|
||
- (line 181)
|
||
+ (line 186)
|
||
* mpfr_div_2ui: Basic Arithmetic Functions.
|
||
- (line 179)
|
||
+ (line 184)
|
||
* mpfr_div_d: Basic Arithmetic Functions.
|
||
- (line 84)
|
||
+ (line 86)
|
||
* mpfr_div_q: Basic Arithmetic Functions.
|
||
- (line 88)
|
||
+ (line 90)
|
||
* mpfr_div_si: Basic Arithmetic Functions.
|
||
- (line 80)
|
||
+ (line 82)
|
||
* mpfr_div_ui: Basic Arithmetic Functions.
|
||
- (line 76)
|
||
+ (line 78)
|
||
* mpfr_div_z: Basic Arithmetic Functions.
|
||
- (line 86)
|
||
+ (line 88)
|
||
* mpfr_d_div: Basic Arithmetic Functions.
|
||
- (line 82)
|
||
+ (line 84)
|
||
* mpfr_d_sub: Basic Arithmetic Functions.
|
||
- (line 35)
|
||
-* mpfr_eint: Special Functions. (line 133)
|
||
+ (line 36)
|
||
+* mpfr_eint: Special Functions. (line 135)
|
||
* mpfr_eq: Compatibility with MPF.
|
||
(line 28)
|
||
* mpfr_equal_p: Comparison Functions.
|
||
(line 59)
|
||
* mpfr_erangeflag_p: Exception Related Functions.
|
||
(line 137)
|
||
-* mpfr_erf: Special Functions. (line 177)
|
||
-* mpfr_erfc: Special Functions. (line 178)
|
||
-* mpfr_exp: Special Functions. (line 23)
|
||
-* mpfr_exp10: Special Functions. (line 25)
|
||
-* mpfr_exp2: Special Functions. (line 24)
|
||
-* mpfr_expm1: Special Functions. (line 129)
|
||
-* mpfr_fac_ui: Special Functions. (line 121)
|
||
+* mpfr_erf: Special Functions. (line 183)
|
||
+* mpfr_erfc: Special Functions. (line 184)
|
||
+* mpfr_exp: Special Functions. (line 25)
|
||
+* mpfr_exp10: Special Functions. (line 27)
|
||
+* mpfr_exp2: Special Functions. (line 26)
|
||
+* mpfr_expm1: Special Functions. (line 131)
|
||
+* mpfr_fac_ui: Special Functions. (line 123)
|
||
* mpfr_fits_intmax_p: Conversion Functions.
|
||
(line 150)
|
||
* mpfr_fits_sint_p: Conversion Functions.
|
||
@@ -3815,20 +3833,20 @@
|
||
(line 147)
|
||
* mpfr_floor: Integer Related Functions.
|
||
(line 8)
|
||
-* mpfr_fma: Special Functions. (line 203)
|
||
+* mpfr_fma: Special Functions. (line 209)
|
||
* mpfr_fmod: Integer Related Functions.
|
||
(line 92)
|
||
-* mpfr_fms: Special Functions. (line 205)
|
||
+* mpfr_fms: Special Functions. (line 211)
|
||
* mpfr_fprintf: Formatted Output Functions.
|
||
(line 157)
|
||
* mpfr_frac: Integer Related Functions.
|
||
(line 76)
|
||
-* mpfr_free_cache: Special Functions. (line 244)
|
||
+* mpfr_free_cache: Special Functions. (line 254)
|
||
* mpfr_free_str: Conversion Functions.
|
||
(line 137)
|
||
* mpfr_frexp: Conversion Functions.
|
||
(line 45)
|
||
-* mpfr_gamma: Special Functions. (line 148)
|
||
+* mpfr_gamma: Special Functions. (line 150)
|
||
* mpfr_get_d: Conversion Functions.
|
||
(line 7)
|
||
* mpfr_get_decimal64: Conversion Functions.
|
||
@@ -3887,7 +3905,7 @@
|
||
(line 56)
|
||
* mpfr_greater_p: Comparison Functions.
|
||
(line 55)
|
||
-* mpfr_hypot: Special Functions. (line 218)
|
||
+* mpfr_hypot: Special Functions. (line 227)
|
||
* mpfr_inexflag_p: Exception Related Functions.
|
||
(line 136)
|
||
* mpfr_inf_p: Comparison Functions.
|
||
@@ -3922,21 +3940,21 @@
|
||
(line 31)
|
||
* mpfr_integer_p: Integer Related Functions.
|
||
(line 119)
|
||
-* mpfr_j0: Special Functions. (line 182)
|
||
-* mpfr_j1: Special Functions. (line 183)
|
||
-* mpfr_jn: Special Functions. (line 184)
|
||
+* mpfr_j0: Special Functions. (line 188)
|
||
+* mpfr_j1: Special Functions. (line 189)
|
||
+* mpfr_jn: Special Functions. (line 190)
|
||
* mpfr_lessequal_p: Comparison Functions.
|
||
(line 58)
|
||
* mpfr_lessgreater_p: Comparison Functions.
|
||
(line 64)
|
||
* mpfr_less_p: Comparison Functions.
|
||
(line 57)
|
||
-* mpfr_lgamma: Special Functions. (line 157)
|
||
-* mpfr_li2: Special Functions. (line 143)
|
||
-* mpfr_lngamma: Special Functions. (line 152)
|
||
+* mpfr_lgamma: Special Functions. (line 162)
|
||
+* mpfr_li2: Special Functions. (line 145)
|
||
+* mpfr_lngamma: Special Functions. (line 154)
|
||
* mpfr_log: Special Functions. (line 16)
|
||
* mpfr_log10: Special Functions. (line 18)
|
||
-* mpfr_log1p: Special Functions. (line 125)
|
||
+* mpfr_log1p: Special Functions. (line 127)
|
||
* mpfr_log2: Special Functions. (line 17)
|
||
* mpfr_max: Miscellaneous Functions.
|
||
(line 22)
|
||
@@ -3947,29 +3965,29 @@
|
||
* mpfr_modf: Integer Related Functions.
|
||
(line 82)
|
||
* mpfr_mul: Basic Arithmetic Functions.
|
||
- (line 51)
|
||
+ (line 53)
|
||
* mpfr_mul_2exp: Compatibility with MPF.
|
||
(line 47)
|
||
* mpfr_mul_2si: Basic Arithmetic Functions.
|
||
- (line 174)
|
||
+ (line 179)
|
||
* mpfr_mul_2ui: Basic Arithmetic Functions.
|
||
- (line 172)
|
||
+ (line 177)
|
||
* mpfr_mul_d: Basic Arithmetic Functions.
|
||
- (line 57)
|
||
+ (line 59)
|
||
* mpfr_mul_q: Basic Arithmetic Functions.
|
||
- (line 61)
|
||
+ (line 63)
|
||
* mpfr_mul_si: Basic Arithmetic Functions.
|
||
- (line 55)
|
||
+ (line 57)
|
||
* mpfr_mul_ui: Basic Arithmetic Functions.
|
||
- (line 53)
|
||
+ (line 55)
|
||
* mpfr_mul_z: Basic Arithmetic Functions.
|
||
- (line 59)
|
||
+ (line 61)
|
||
* mpfr_nanflag_p: Exception Related Functions.
|
||
(line 135)
|
||
* mpfr_nan_p: Comparison Functions.
|
||
(line 39)
|
||
* mpfr_neg: Basic Arithmetic Functions.
|
||
- (line 159)
|
||
+ (line 164)
|
||
* mpfr_nextabove: Miscellaneous Functions.
|
||
(line 15)
|
||
* mpfr_nextbelow: Miscellaneous Functions.
|
||
@@ -3983,13 +4001,13 @@
|
||
* mpfr_overflow_p: Exception Related Functions.
|
||
(line 133)
|
||
* mpfr_pow: Basic Arithmetic Functions.
|
||
- (line 116)
|
||
+ (line 121)
|
||
* mpfr_pow_si: Basic Arithmetic Functions.
|
||
- (line 120)
|
||
+ (line 125)
|
||
* mpfr_pow_ui: Basic Arithmetic Functions.
|
||
- (line 118)
|
||
+ (line 123)
|
||
* mpfr_pow_z: Basic Arithmetic Functions.
|
||
- (line 122)
|
||
+ (line 127)
|
||
* mpfr_prec_round: Rounding Related Functions.
|
||
(line 13)
|
||
* ‘mpfr_prec_t’: Nomenclature and Types.
|
||
@@ -3999,7 +4017,7 @@
|
||
* mpfr_print_rnd_mode: Rounding Related Functions.
|
||
(line 71)
|
||
* mpfr_rec_sqrt: Basic Arithmetic Functions.
|
||
- (line 103)
|
||
+ (line 105)
|
||
* mpfr_regular_p: Comparison Functions.
|
||
(line 43)
|
||
* mpfr_reldiff: Compatibility with MPF.
|
||
@@ -4021,11 +4039,11 @@
|
||
* ‘mpfr_rnd_t’: Nomenclature and Types.
|
||
(line 34)
|
||
* mpfr_root: Basic Arithmetic Functions.
|
||
- (line 109)
|
||
+ (line 114)
|
||
* mpfr_round: Integer Related Functions.
|
||
(line 9)
|
||
-* mpfr_sec: Special Functions. (line 45)
|
||
-* mpfr_sech: Special Functions. (line 109)
|
||
+* mpfr_sec: Special Functions. (line 47)
|
||
+* mpfr_sech: Special Functions. (line 111)
|
||
* mpfr_set: Assignment Functions.
|
||
(line 9)
|
||
* mpfr_setsign: Miscellaneous Functions.
|
||
@@ -4100,57 +4118,57 @@
|
||
(line 49)
|
||
* mpfr_signbit: Miscellaneous Functions.
|
||
(line 99)
|
||
-* mpfr_sin: Special Functions. (line 30)
|
||
-* mpfr_sinh: Special Functions. (line 96)
|
||
-* mpfr_sinh_cosh: Special Functions. (line 101)
|
||
-* mpfr_sin_cos: Special Functions. (line 35)
|
||
+* mpfr_sin: Special Functions. (line 32)
|
||
+* mpfr_sinh: Special Functions. (line 98)
|
||
+* mpfr_sinh_cosh: Special Functions. (line 103)
|
||
+* mpfr_sin_cos: Special Functions. (line 37)
|
||
* mpfr_si_div: Basic Arithmetic Functions.
|
||
- (line 78)
|
||
+ (line 80)
|
||
* mpfr_si_sub: Basic Arithmetic Functions.
|
||
- (line 31)
|
||
+ (line 32)
|
||
* mpfr_snprintf: Formatted Output Functions.
|
||
(line 180)
|
||
* mpfr_sprintf: Formatted Output Functions.
|
||
(line 170)
|
||
* mpfr_sqr: Basic Arithmetic Functions.
|
||
- (line 69)
|
||
+ (line 71)
|
||
* mpfr_sqrt: Basic Arithmetic Functions.
|
||
- (line 96)
|
||
+ (line 98)
|
||
* mpfr_sqrt_ui: Basic Arithmetic Functions.
|
||
- (line 97)
|
||
+ (line 99)
|
||
* mpfr_strtofr: Assignment Functions.
|
||
(line 80)
|
||
* mpfr_sub: Basic Arithmetic Functions.
|
||
- (line 25)
|
||
+ (line 26)
|
||
* mpfr_subnormalize: Exception Related Functions.
|
||
(line 60)
|
||
* mpfr_sub_d: Basic Arithmetic Functions.
|
||
- (line 37)
|
||
+ (line 38)
|
||
* mpfr_sub_q: Basic Arithmetic Functions.
|
||
- (line 43)
|
||
+ (line 44)
|
||
* mpfr_sub_si: Basic Arithmetic Functions.
|
||
- (line 33)
|
||
+ (line 34)
|
||
* mpfr_sub_ui: Basic Arithmetic Functions.
|
||
- (line 29)
|
||
+ (line 30)
|
||
* mpfr_sub_z: Basic Arithmetic Functions.
|
||
- (line 41)
|
||
-* mpfr_sum: Special Functions. (line 252)
|
||
+ (line 42)
|
||
+* mpfr_sum: Special Functions. (line 262)
|
||
* mpfr_swap: Assignment Functions.
|
||
(line 150)
|
||
* ‘mpfr_t’: Nomenclature and Types.
|
||
(line 6)
|
||
-* mpfr_tan: Special Functions. (line 31)
|
||
-* mpfr_tanh: Special Functions. (line 97)
|
||
+* mpfr_tan: Special Functions. (line 33)
|
||
+* mpfr_tanh: Special Functions. (line 99)
|
||
* mpfr_trunc: Integer Related Functions.
|
||
(line 10)
|
||
* mpfr_ui_div: Basic Arithmetic Functions.
|
||
- (line 74)
|
||
+ (line 76)
|
||
* mpfr_ui_pow: Basic Arithmetic Functions.
|
||
- (line 126)
|
||
+ (line 131)
|
||
* mpfr_ui_pow_ui: Basic Arithmetic Functions.
|
||
- (line 124)
|
||
+ (line 129)
|
||
* mpfr_ui_sub: Basic Arithmetic Functions.
|
||
- (line 27)
|
||
+ (line 28)
|
||
* mpfr_underflow_p: Exception Related Functions.
|
||
(line 132)
|
||
* mpfr_unordered_p: Comparison Functions.
|
||
@@ -4181,61 +4199,61 @@
|
||
(line 182)
|
||
* mpfr_vsprintf: Formatted Output Functions.
|
||
(line 171)
|
||
-* mpfr_y0: Special Functions. (line 193)
|
||
-* mpfr_y1: Special Functions. (line 194)
|
||
-* mpfr_yn: Special Functions. (line 195)
|
||
+* mpfr_y0: Special Functions. (line 199)
|
||
+* mpfr_y1: Special Functions. (line 200)
|
||
+* mpfr_yn: Special Functions. (line 201)
|
||
* mpfr_zero_p: Comparison Functions.
|
||
(line 42)
|
||
-* mpfr_zeta: Special Functions. (line 171)
|
||
-* mpfr_zeta_ui: Special Functions. (line 172)
|
||
+* mpfr_zeta: Special Functions. (line 177)
|
||
+* mpfr_zeta_ui: Special Functions. (line 178)
|
||
* mpfr_z_sub: Basic Arithmetic Functions.
|
||
- (line 39)
|
||
+ (line 40)
|
||
|
||
|
||
|
||
Tag Table:
|
||
Node: Top775
|
||
Node: Copying2007
|
||
-Node: Introduction to MPFR3766
|
||
-Node: Installing MPFR5880
|
||
-Node: Reporting Bugs11323
|
||
-Node: MPFR Basics13353
|
||
-Node: Headers and Libraries13669
|
||
-Node: Nomenclature and Types16828
|
||
-Node: MPFR Variable Conventions18874
|
||
-Node: Rounding Modes20418
|
||
-Ref: ternary value21544
|
||
-Node: Floating-Point Values on Special Numbers23526
|
||
-Node: Exceptions26572
|
||
-Node: Memory Handling29749
|
||
-Node: MPFR Interface30894
|
||
-Node: Initialization Functions33008
|
||
-Node: Assignment Functions40318
|
||
-Node: Combined Initialization and Assignment Functions49673
|
||
-Node: Conversion Functions50974
|
||
-Node: Basic Arithmetic Functions60035
|
||
-Node: Comparison Functions69200
|
||
-Node: Special Functions72687
|
||
-Node: Input and Output Functions86672
|
||
-Node: Formatted Output Functions88644
|
||
-Node: Integer Related Functions98431
|
||
-Node: Rounding Related Functions105051
|
||
-Node: Miscellaneous Functions108888
|
||
-Node: Exception Related Functions117568
|
||
-Node: Compatibility with MPF124386
|
||
-Node: Custom Interface127127
|
||
-Node: Internals131526
|
||
-Node: API Compatibility133066
|
||
-Node: Type and Macro Changes134995
|
||
-Node: Added Functions137844
|
||
-Node: Changed Functions141132
|
||
-Node: Removed Functions145545
|
||
-Node: Other Changes145973
|
||
-Node: Contributors147576
|
||
-Node: References150219
|
||
-Node: GNU Free Documentation License151973
|
||
-Node: Concept Index174562
|
||
-Node: Function and Type Index180659
|
||
+Node: Introduction to MPFR3770
|
||
+Node: Installing MPFR5884
|
||
+Node: Reporting Bugs11327
|
||
+Node: MPFR Basics13357
|
||
+Node: Headers and Libraries13673
|
||
+Node: Nomenclature and Types16832
|
||
+Node: MPFR Variable Conventions18894
|
||
+Node: Rounding Modes20438
|
||
+Ref: ternary value21568
|
||
+Node: Floating-Point Values on Special Numbers23554
|
||
+Node: Exceptions26813
|
||
+Node: Memory Handling29990
|
||
+Node: MPFR Interface31135
|
||
+Node: Initialization Functions33249
|
||
+Node: Assignment Functions40559
|
||
+Node: Combined Initialization and Assignment Functions49914
|
||
+Node: Conversion Functions51215
|
||
+Node: Basic Arithmetic Functions60276
|
||
+Node: Comparison Functions69777
|
||
+Node: Special Functions73264
|
||
+Node: Input and Output Functions87862
|
||
+Node: Formatted Output Functions89834
|
||
+Node: Integer Related Functions99621
|
||
+Node: Rounding Related Functions106241
|
||
+Node: Miscellaneous Functions110078
|
||
+Node: Exception Related Functions118758
|
||
+Node: Compatibility with MPF125576
|
||
+Node: Custom Interface128317
|
||
+Node: Internals132716
|
||
+Node: API Compatibility134260
|
||
+Node: Type and Macro Changes136189
|
||
+Node: Added Functions139038
|
||
+Node: Changed Functions142326
|
||
+Node: Removed Functions146739
|
||
+Node: Other Changes147167
|
||
+Node: Contributors148770
|
||
+Node: References151413
|
||
+Node: GNU Free Documentation License153167
|
||
+Node: Concept Index175760
|
||
+Node: Function and Type Index181857
|
||
|
||
End Tag Table
|
||
|
||
diff -Naurd mpfr-3.1.3-a/src/lngamma.c mpfr-3.1.3-b/src/lngamma.c
|
||
--- mpfr-3.1.3-a/src/lngamma.c 2015-06-19 19:55:10.000000000 +0000
|
||
+++ mpfr-3.1.3-b/src/lngamma.c 2015-07-02 10:49:24.018113593 +0000
|
||
@@ -603,16 +603,17 @@
|
||
mpfr_get_prec (y), mpfr_log_prec, y, inex));
|
||
|
||
/* special cases */
|
||
- if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
|
||
+ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x) ||
|
||
+ (MPFR_IS_NEG (x) && mpfr_integer_p (x))))
|
||
{
|
||
- if (MPFR_IS_NAN (x) || MPFR_IS_NEG (x))
|
||
+ if (MPFR_IS_NAN (x))
|
||
{
|
||
MPFR_SET_NAN (y);
|
||
MPFR_RET_NAN;
|
||
}
|
||
- else /* lngamma(+Inf) = lngamma(+0) = +Inf */
|
||
+ else /* lngamma(+/-Inf) = lngamma(nonpositive integer) = +Inf */
|
||
{
|
||
- if (MPFR_IS_ZERO (x))
|
||
+ if (!MPFR_IS_INF (x))
|
||
mpfr_set_divby0 ();
|
||
MPFR_SET_INF (y);
|
||
MPFR_SET_POS (y);
|
||
@@ -620,8 +621,8 @@
|
||
}
|
||
}
|
||
|
||
- /* if x < 0 and -2k-1 <= x <= -2k, then lngamma(x) = NaN */
|
||
- if (MPFR_IS_NEG (x) && (unit_bit (x) == 0 || mpfr_integer_p (x)))
|
||
+ /* if -2k-1 < x < -2k <= 0, then lngamma(x) = NaN */
|
||
+ if (MPFR_IS_NEG (x) && unit_bit (x) == 0)
|
||
{
|
||
MPFR_SET_NAN (y);
|
||
MPFR_RET_NAN;
|
||
diff -Naurd mpfr-3.1.3-a/src/mpfr.h mpfr-3.1.3-b/src/mpfr.h
|
||
--- mpfr-3.1.3-a/src/mpfr.h 2015-06-19 19:55:10.000000000 +0000
|
||
+++ mpfr-3.1.3-b/src/mpfr.h 2015-07-02 10:49:24.038113803 +0000
|
||
@@ -27,7 +27,7 @@
|
||
#define MPFR_VERSION_MAJOR 3
|
||
#define MPFR_VERSION_MINOR 1
|
||
#define MPFR_VERSION_PATCHLEVEL 3
|
||
-#define MPFR_VERSION_STRING "3.1.3"
|
||
+#define MPFR_VERSION_STRING "3.1.3-p1"
|
||
|
||
/* Macros dealing with MPFR VERSION */
|
||
#define MPFR_VERSION_NUM(a,b,c) (((a) << 16L) | ((b) << 8) | (c))
|
||
diff -Naurd mpfr-3.1.3-a/src/version.c mpfr-3.1.3-b/src/version.c
|
||
--- mpfr-3.1.3-a/src/version.c 2015-06-19 19:55:10.000000000 +0000
|
||
+++ mpfr-3.1.3-b/src/version.c 2015-07-02 10:49:24.042113845 +0000
|
||
@@ -25,5 +25,5 @@
|
||
const char *
|
||
mpfr_get_version (void)
|
||
{
|
||
- return "3.1.3";
|
||
+ return "3.1.3-p1";
|
||
}
|
||
diff -Naurd mpfr-3.1.3-a/tests/tlngamma.c mpfr-3.1.3-b/tests/tlngamma.c
|
||
--- mpfr-3.1.3-a/tests/tlngamma.c 2015-06-19 19:55:10.000000000 +0000
|
||
+++ mpfr-3.1.3-b/tests/tlngamma.c 2015-07-02 10:49:24.018113593 +0000
|
||
@@ -33,7 +33,7 @@
|
||
special (void)
|
||
{
|
||
mpfr_t x, y;
|
||
- int inex;
|
||
+ int i, inex;
|
||
|
||
mpfr_init (x);
|
||
mpfr_init (y);
|
||
@@ -46,25 +46,29 @@
|
||
exit (1);
|
||
}
|
||
|
||
- mpfr_set_inf (x, -1);
|
||
+ mpfr_set_inf (x, 1);
|
||
+ mpfr_clear_flags ();
|
||
mpfr_lngamma (y, x, MPFR_RNDN);
|
||
- if (!mpfr_nan_p (y))
|
||
+ if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0 || __gmpfr_flags != 0)
|
||
{
|
||
- printf ("Error for lngamma(-Inf)\n");
|
||
+ printf ("Error for lngamma(+Inf)\n");
|
||
exit (1);
|
||
}
|
||
|
||
- mpfr_set_inf (x, 1);
|
||
+ mpfr_set_inf (x, -1);
|
||
+ mpfr_clear_flags ();
|
||
mpfr_lngamma (y, x, MPFR_RNDN);
|
||
- if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0)
|
||
+ if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0 || __gmpfr_flags != 0)
|
||
{
|
||
- printf ("Error for lngamma(+Inf)\n");
|
||
+ printf ("Error for lngamma(-Inf)\n");
|
||
exit (1);
|
||
}
|
||
|
||
mpfr_set_ui (x, 0, MPFR_RNDN);
|
||
+ mpfr_clear_flags ();
|
||
mpfr_lngamma (y, x, MPFR_RNDN);
|
||
- if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0)
|
||
+ if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0 ||
|
||
+ __gmpfr_flags != MPFR_FLAGS_DIVBY0)
|
||
{
|
||
printf ("Error for lngamma(+0)\n");
|
||
exit (1);
|
||
@@ -72,32 +76,58 @@
|
||
|
||
mpfr_set_ui (x, 0, MPFR_RNDN);
|
||
mpfr_neg (x, x, MPFR_RNDN);
|
||
+ mpfr_clear_flags ();
|
||
mpfr_lngamma (y, x, MPFR_RNDN);
|
||
- if (!mpfr_nan_p (y))
|
||
+ if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0 ||
|
||
+ __gmpfr_flags != MPFR_FLAGS_DIVBY0)
|
||
{
|
||
printf ("Error for lngamma(-0)\n");
|
||
exit (1);
|
||
}
|
||
|
||
mpfr_set_ui (x, 1, MPFR_RNDN);
|
||
+ mpfr_clear_flags ();
|
||
mpfr_lngamma (y, x, MPFR_RNDN);
|
||
- if (MPFR_IS_NAN (y) || mpfr_cmp_ui (y, 0) || MPFR_IS_NEG (y))
|
||
+ if (mpfr_cmp_ui0 (y, 0) || MPFR_IS_NEG (y))
|
||
{
|
||
printf ("Error for lngamma(1)\n");
|
||
exit (1);
|
||
}
|
||
|
||
- mpfr_set_si (x, -1, MPFR_RNDN);
|
||
- mpfr_lngamma (y, x, MPFR_RNDN);
|
||
- if (!mpfr_nan_p (y))
|
||
+ for (i = 1; i <= 5; i++)
|
||
{
|
||
- printf ("Error for lngamma(-1)\n");
|
||
- exit (1);
|
||
+ int c;
|
||
+
|
||
+ mpfr_set_si (x, -i, MPFR_RNDN);
|
||
+ mpfr_clear_flags ();
|
||
+ mpfr_lngamma (y, x, MPFR_RNDN);
|
||
+ if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0 ||
|
||
+ __gmpfr_flags != MPFR_FLAGS_DIVBY0)
|
||
+ {
|
||
+ printf ("Error for lngamma(-%d)\n", i);
|
||
+ exit (1);
|
||
+ }
|
||
+ if (i & 1)
|
||
+ {
|
||
+ mpfr_nextabove (x);
|
||
+ c = '+';
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ mpfr_nextbelow (x);
|
||
+ c = '-';
|
||
+ }
|
||
+ mpfr_lngamma (y, x, MPFR_RNDN);
|
||
+ if (!mpfr_nan_p (y))
|
||
+ {
|
||
+ printf ("Error for lngamma(-%d%cepsilon)\n", i, c);
|
||
+ exit (1);
|
||
+ }
|
||
}
|
||
|
||
mpfr_set_ui (x, 2, MPFR_RNDN);
|
||
mpfr_lngamma (y, x, MPFR_RNDN);
|
||
- if (MPFR_IS_NAN (y) || mpfr_cmp_ui (y, 0) || MPFR_IS_NEG (y))
|
||
+ if (mpfr_cmp_ui0 (y, 0) || MPFR_IS_NEG (y))
|
||
{
|
||
printf ("Error for lngamma(2)\n");
|
||
exit (1);
|
||
@@ -127,7 +157,7 @@
|
||
mpfr_set_str (x, CHECK_X2, 10, MPFR_RNDN);
|
||
mpfr_lngamma (y, x, MPFR_RNDN);
|
||
mpfr_set_str (x, CHECK_Y2, 10, MPFR_RNDN);
|
||
- if (MPFR_IS_NAN (y) || mpfr_cmp (y, x))
|
||
+ if (mpfr_cmp0 (y, x))
|
||
{
|
||
printf ("mpfr_lngamma("CHECK_X2") is wrong:\n"
|
||
"expected ");
|
||
@@ -143,7 +173,7 @@
|
||
mpfr_lngamma (y, x, MPFR_RNDU);
|
||
mpfr_set_prec (x, 175);
|
||
mpfr_set_str_binary (x, "0.1010001100011101101011001101110010100001000001000001110011000001101100001111001001000101011011100100010101011110100111110101010100010011010010000101010111001100011000101111E7");
|
||
- if (MPFR_IS_NAN (y) || mpfr_cmp (x, y))
|
||
+ if (mpfr_cmp0 (x, y))
|
||
{
|
||
printf ("Error in mpfr_lngamma (1)\n");
|
||
exit (1);
|
||
@@ -155,7 +185,7 @@
|
||
mpfr_lngamma (x, y, MPFR_RNDZ);
|
||
mpfr_set_prec (y, 21);
|
||
mpfr_set_str_binary (y, "0.111000101000001100101E9");
|
||
- if (MPFR_IS_NAN (x) || mpfr_cmp (x, y))
|
||
+ if (mpfr_cmp0 (x, y))
|
||
{
|
||
printf ("Error in mpfr_lngamma (120)\n");
|
||
printf ("Expected "); mpfr_print_binary (y); puts ("");
|
||
@@ -169,7 +199,7 @@
|
||
inex = mpfr_lngamma (y, x, MPFR_RNDN);
|
||
mpfr_set_prec (x, 206);
|
||
mpfr_set_str_binary (x, "0.10000111011000000011100010101001100110001110000111100011000100100110110010001011011110101001111011110110000001010100111011010000000011100110110101100111000111010011110010000100010111101010001101000110101001E13");
|
||
- if (MPFR_IS_NAN (y) || mpfr_cmp (x, y))
|
||
+ if (mpfr_cmp0 (x, y))
|
||
{
|
||
printf ("Error in mpfr_lngamma (768)\n");
|
||
exit (1);
|
||
@@ -185,7 +215,7 @@
|
||
mpfr_set_str_binary (x, "0.1100E-66");
|
||
mpfr_lngamma (y, x, MPFR_RNDN);
|
||
mpfr_set_str_binary (x, "0.1100E6");
|
||
- if (MPFR_IS_NAN (y) || mpfr_cmp (x, y))
|
||
+ if (mpfr_cmp0 (x, y))
|
||
{
|
||
printf ("Error for lngamma(0.1100E-66)\n");
|
||
exit (1);
|
||
@@ -199,7 +229,7 @@
|
||
mpfr_lngamma (y, x, MPFR_RNDN);
|
||
mpfr_set_prec (x, 32);
|
||
mpfr_set_str_binary (x, "-0.10001000111011111011000010100010E207");
|
||
- if (MPFR_IS_NAN (y) || mpfr_cmp (x, y))
|
||
+ if (mpfr_cmp0 (x, y))
|
||
{
|
||
printf ("Error for lngamma(-2^199+0.5)\n");
|
||
printf ("Got ");
|