mirror of
https://github.com/crosstool-ng/crosstool-ng.git
synced 2025-01-12 16:02:42 +00:00
2e6a56d1cc
This changeset adds official patches published on mpfr website. Signed-off-by: Kirill K. Smirnov <kirill.k.smirnov@gmail.com>
622 lines
19 KiB
Diff
622 lines
19 KiB
Diff
diff -Naurd mpfr-3.1.3-a/PATCHES mpfr-3.1.3-b/PATCHES
|
|
--- mpfr-3.1.3-a/PATCHES 2016-02-15 15:20:51.242696408 +0000
|
|
+++ mpfr-3.1.3-b/PATCHES 2016-02-15 15:20:51.306696441 +0000
|
|
@@ -0,0 +1 @@
|
|
+root
|
|
diff -Naurd mpfr-3.1.3-a/VERSION mpfr-3.1.3-b/VERSION
|
|
--- mpfr-3.1.3-a/VERSION 2016-02-15 15:20:16.922677881 +0000
|
|
+++ mpfr-3.1.3-b/VERSION 2016-02-15 15:20:51.306696441 +0000
|
|
@@ -1 +1 @@
|
|
-3.1.3-p11
|
|
+3.1.3-p12
|
|
diff -Naurd mpfr-3.1.3-a/src/mpfr.h mpfr-3.1.3-b/src/mpfr.h
|
|
--- mpfr-3.1.3-a/src/mpfr.h 2016-02-15 15:20:16.922677881 +0000
|
|
+++ mpfr-3.1.3-b/src/mpfr.h 2016-02-15 15:20:51.302696439 +0000
|
|
@@ -27,7 +27,7 @@
|
|
#define MPFR_VERSION_MAJOR 3
|
|
#define MPFR_VERSION_MINOR 1
|
|
#define MPFR_VERSION_PATCHLEVEL 3
|
|
-#define MPFR_VERSION_STRING "3.1.3-p11"
|
|
+#define MPFR_VERSION_STRING "3.1.3-p12"
|
|
|
|
/* Macros dealing with MPFR VERSION */
|
|
#define MPFR_VERSION_NUM(a,b,c) (((a) << 16L) | ((b) << 8) | (c))
|
|
diff -Naurd mpfr-3.1.3-a/src/root.c mpfr-3.1.3-b/src/root.c
|
|
--- mpfr-3.1.3-a/src/root.c 2015-06-19 19:55:10.000000000 +0000
|
|
+++ mpfr-3.1.3-b/src/root.c 2016-02-15 15:20:51.282696429 +0000
|
|
@@ -23,13 +23,15 @@
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
- /* The computation of y = x^(1/k) is done as follows:
|
|
+ /* The computation of y = x^(1/k) is done as follows, except for large
|
|
+ values of k, for which this would be inefficient or yield internal
|
|
+ integer overflows:
|
|
|
|
Let x = sign * m * 2^(k*e) where m is an integer
|
|
|
|
with 2^(k*(n-1)) <= m < 2^(k*n) where n = PREC(y)
|
|
|
|
- and m = s^k + r where 0 <= r and m < (s+1)^k
|
|
+ and m = s^k + t where 0 <= t and m < (s+1)^k
|
|
|
|
we want that s has n bits i.e. s >= 2^(n-1), or m >= 2^(k*(n-1))
|
|
i.e. m must have at least k*(n-1)+1 bits
|
|
@@ -38,11 +40,15 @@
|
|
x^(1/k) = s * 2^e or (s+1) * 2^e according to the rounding mode.
|
|
*/
|
|
|
|
+static int
|
|
+mpfr_root_aux (mpfr_ptr y, mpfr_srcptr x, unsigned long k,
|
|
+ mpfr_rnd_t rnd_mode);
|
|
+
|
|
int
|
|
mpfr_root (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mpfr_rnd_t rnd_mode)
|
|
{
|
|
mpz_t m;
|
|
- mpfr_exp_t e, r, sh;
|
|
+ mpfr_exp_t e, r, sh, f;
|
|
mpfr_prec_t n, size_m, tmp;
|
|
int inexact, negative;
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
@@ -55,50 +61,27 @@
|
|
|
|
if (MPFR_UNLIKELY (k <= 1))
|
|
{
|
|
- if (k < 1) /* k==0 => y=x^(1/0)=x^(+Inf) */
|
|
-#if 0
|
|
- /* For 0 <= x < 1 => +0.
|
|
- For x = 1 => 1.
|
|
- For x > 1, => +Inf.
|
|
- For x < 0 => NaN.
|
|
- */
|
|
+ if (k == 0)
|
|
{
|
|
- if (MPFR_IS_NEG (x) && !MPFR_IS_ZERO (x))
|
|
- {
|
|
- MPFR_SET_NAN (y);
|
|
- MPFR_RET_NAN;
|
|
- }
|
|
- inexact = mpfr_cmp (x, __gmpfr_one);
|
|
- if (inexact == 0)
|
|
- return mpfr_set_ui (y, 1, rnd_mode); /* 1 may be Out of Range */
|
|
- else if (inexact < 0)
|
|
- return mpfr_set_ui (y, 0, rnd_mode); /* 0+ */
|
|
- else
|
|
- {
|
|
- mpfr_set_inf (y, 1);
|
|
- return 0;
|
|
- }
|
|
+ MPFR_SET_NAN (y);
|
|
+ MPFR_RET_NAN;
|
|
}
|
|
-#endif
|
|
- {
|
|
- MPFR_SET_NAN (y);
|
|
- MPFR_RET_NAN;
|
|
- }
|
|
- else /* y =x^(1/1)=x */
|
|
+ else /* y = x^(1/1) = x */
|
|
return mpfr_set (y, x, rnd_mode);
|
|
}
|
|
|
|
/* Singular values */
|
|
- else if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
|
|
+ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
|
|
{
|
|
if (MPFR_IS_NAN (x))
|
|
{
|
|
MPFR_SET_NAN (y); /* NaN^(1/k) = NaN */
|
|
MPFR_RET_NAN;
|
|
}
|
|
- else if (MPFR_IS_INF (x)) /* +Inf^(1/k) = +Inf
|
|
- -Inf^(1/k) = -Inf if k odd
|
|
- -Inf^(1/k) = NaN if k even */
|
|
+
|
|
+ if (MPFR_IS_INF (x)) /* +Inf^(1/k) = +Inf
|
|
+ -Inf^(1/k) = -Inf if k odd
|
|
+ -Inf^(1/k) = NaN if k even */
|
|
{
|
|
if (MPFR_IS_NEG(x) && (k % 2 == 0))
|
|
{
|
|
@@ -106,27 +89,31 @@
|
|
MPFR_RET_NAN;
|
|
}
|
|
MPFR_SET_INF (y);
|
|
- MPFR_SET_SAME_SIGN (y, x);
|
|
- MPFR_RET (0);
|
|
}
|
|
else /* x is necessarily 0: (+0)^(1/k) = +0
|
|
(-0)^(1/k) = -0 */
|
|
{
|
|
MPFR_ASSERTD (MPFR_IS_ZERO (x));
|
|
MPFR_SET_ZERO (y);
|
|
- MPFR_SET_SAME_SIGN (y, x);
|
|
- MPFR_RET (0);
|
|
}
|
|
+ MPFR_SET_SAME_SIGN (y, x);
|
|
+ MPFR_RET (0);
|
|
}
|
|
|
|
/* Returns NAN for x < 0 and k even */
|
|
- else if (MPFR_IS_NEG (x) && (k % 2 == 0))
|
|
+ if (MPFR_UNLIKELY (MPFR_IS_NEG (x) && (k % 2 == 0)))
|
|
{
|
|
MPFR_SET_NAN (y);
|
|
MPFR_RET_NAN;
|
|
}
|
|
|
|
/* General case */
|
|
+
|
|
+ /* For large k, use exp(log(x)/k). The threshold of 100 seems to be quite
|
|
+ good when the precision goes to infinity. */
|
|
+ if (k > 100)
|
|
+ return mpfr_root_aux (y, x, k, rnd_mode);
|
|
+
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
mpz_init (m);
|
|
|
|
@@ -135,31 +122,24 @@
|
|
mpz_neg (m, m);
|
|
r = e % (mpfr_exp_t) k;
|
|
if (r < 0)
|
|
- r += k; /* now r = e (mod k) with 0 <= e < r */
|
|
+ r += k; /* now r = e (mod k) with 0 <= r < k */
|
|
+ MPFR_ASSERTD (0 <= r && r < k);
|
|
/* x = (m*2^r) * 2^(e-r) where e-r is a multiple of k */
|
|
|
|
MPFR_MPZ_SIZEINBASE2 (size_m, m);
|
|
/* for rounding to nearest, we want the round bit to be in the root */
|
|
n = MPFR_PREC (y) + (rnd_mode == MPFR_RNDN);
|
|
|
|
- /* we now multiply m by 2^(r+k*sh) so that root(m,k) will give
|
|
- exactly n bits: we want k*(n-1)+1 <= size_m + k*sh + r <= k*n
|
|
- i.e. sh = floor ((kn-size_m-r)/k) */
|
|
- if ((mpfr_exp_t) size_m + r > k * (mpfr_exp_t) n)
|
|
- sh = 0; /* we already have too many bits */
|
|
+ /* we now multiply m by 2^sh so that root(m,k) will give
|
|
+ exactly n bits: we want k*(n-1)+1 <= size_m + sh <= k*n
|
|
+ i.e. sh = k*f + r with f = max(floor((k*n-size_m-r)/k),0) */
|
|
+ if ((mpfr_exp_t) size_m + r >= k * (mpfr_exp_t) n)
|
|
+ f = 0; /* we already have too many bits */
|
|
else
|
|
- sh = (k * (mpfr_exp_t) n - (mpfr_exp_t) size_m - r) / k;
|
|
- sh = k * sh + r;
|
|
- if (sh >= 0)
|
|
- {
|
|
- mpz_mul_2exp (m, m, sh);
|
|
- e = e - sh;
|
|
- }
|
|
- else if (r > 0)
|
|
- {
|
|
- mpz_mul_2exp (m, m, r);
|
|
- e = e - r;
|
|
- }
|
|
+ f = (k * (mpfr_exp_t) n - (mpfr_exp_t) size_m - r) / k;
|
|
+ sh = k * f + r;
|
|
+ mpz_mul_2exp (m, m, sh);
|
|
+ e = e - sh;
|
|
|
|
/* invariant: x = m*2^e, with e divisible by k */
|
|
|
|
@@ -203,3 +183,97 @@
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return mpfr_check_range (y, inexact, rnd_mode);
|
|
}
|
|
+
|
|
+/* Compute y <- x^(1/k) using exp(log(x)/k).
|
|
+ Assume all special cases have been eliminated before.
|
|
+ In the extended exponent range, overflows/underflows are not possible.
|
|
+ Assume x > 0, or x < 0 and k odd.
|
|
+*/
|
|
+static int
|
|
+mpfr_root_aux (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mpfr_rnd_t rnd_mode)
|
|
+{
|
|
+ int inexact, exact_root = 0;
|
|
+ mpfr_prec_t w; /* working precision */
|
|
+ mpfr_t absx, t;
|
|
+ MPFR_GROUP_DECL(group);
|
|
+ MPFR_TMP_DECL(marker);
|
|
+ MPFR_ZIV_DECL(loop);
|
|
+ MPFR_SAVE_EXPO_DECL (expo);
|
|
+
|
|
+ MPFR_TMP_INIT_ABS (absx, x);
|
|
+
|
|
+ MPFR_TMP_MARK(marker);
|
|
+ w = MPFR_PREC(y) + 10;
|
|
+ /* Take some guard bits to prepare for the 'expt' lost bits below.
|
|
+ If |x| < 2^k, then log|x| < k, thus taking log2(k) bits should be fine. */
|
|
+ if (MPFR_GET_EXP(x) > 0)
|
|
+ w += MPFR_INT_CEIL_LOG2 (MPFR_GET_EXP(x));
|
|
+ MPFR_GROUP_INIT_1(group, w, t);
|
|
+ MPFR_SAVE_EXPO_MARK (expo);
|
|
+ MPFR_ZIV_INIT (loop, w);
|
|
+ for (;;)
|
|
+ {
|
|
+ mpfr_exp_t expt;
|
|
+ unsigned int err;
|
|
+
|
|
+ mpfr_log (t, absx, MPFR_RNDN);
|
|
+ /* t = log|x| * (1 + theta) with |theta| <= 2^(-w) */
|
|
+ mpfr_div_ui (t, t, k, MPFR_RNDN);
|
|
+ expt = MPFR_GET_EXP (t);
|
|
+ /* t = log|x|/k * (1 + theta) + eps with |theta| <= 2^(-w)
|
|
+ and |eps| <= 1/2 ulp(t), thus the total error is bounded
|
|
+ by 1.5 * 2^(expt - w) */
|
|
+ mpfr_exp (t, t, MPFR_RNDN);
|
|
+ /* t = |x|^(1/k) * exp(tau) * (1 + theta1) with
|
|
+ |tau| <= 1.5 * 2^(expt - w) and |theta1| <= 2^(-w).
|
|
+ For |tau| <= 0.5 we have |exp(tau)-1| < 4/3*tau, thus
|
|
+ for w >= expt + 2 we have:
|
|
+ t = |x|^(1/k) * (1 + 2^(expt+2)*theta2) * (1 + theta1) with
|
|
+ |theta1|, |theta2| <= 2^(-w).
|
|
+ If expt+2 > 0, as long as w >= 1, we have:
|
|
+ t = |x|^(1/k) * (1 + 2^(expt+3)*theta3) with |theta3| < 2^(-w).
|
|
+ For expt+2 = 0, we have:
|
|
+ t = |x|^(1/k) * (1 + 2^2*theta3) with |theta3| < 2^(-w).
|
|
+ Finally for expt+2 < 0 we have:
|
|
+ t = |x|^(1/k) * (1 + 2*theta3) with |theta3| < 2^(-w).
|
|
+ */
|
|
+ err = (expt + 2 > 0) ? expt + 3
|
|
+ : (expt + 2 == 0) ? 2 : 1;
|
|
+ /* now t = |x|^(1/k) * (1 + 2^(err-w)) thus the error is at most
|
|
+ 2^(EXP(t) - w + err) */
|
|
+ if (MPFR_LIKELY (MPFR_CAN_ROUND(t, w - err, MPFR_PREC(y), rnd_mode)))
|
|
+ break;
|
|
+
|
|
+ /* If we fail to round correctly, check for an exact result or a
|
|
+ midpoint result with MPFR_RNDN (regarded as hard-to-round in
|
|
+ all precisions in order to determine the ternary value). */
|
|
+ {
|
|
+ mpfr_t z, zk;
|
|
+
|
|
+ mpfr_init2 (z, MPFR_PREC(y) + (rnd_mode == MPFR_RNDN));
|
|
+ mpfr_init2 (zk, MPFR_PREC(x));
|
|
+ mpfr_set (z, t, MPFR_RNDN);
|
|
+ inexact = mpfr_pow_ui (zk, z, k, MPFR_RNDN);
|
|
+ exact_root = !inexact && mpfr_equal_p (zk, absx);
|
|
+ if (exact_root) /* z is the exact root, thus round z directly */
|
|
+ inexact = mpfr_set4 (y, z, rnd_mode, MPFR_SIGN (x));
|
|
+ mpfr_clear (zk);
|
|
+ mpfr_clear (z);
|
|
+ if (exact_root)
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ MPFR_ZIV_NEXT (loop, w);
|
|
+ MPFR_GROUP_REPREC_1(group, w, t);
|
|
+ }
|
|
+ MPFR_ZIV_FREE (loop);
|
|
+
|
|
+ if (!exact_root)
|
|
+ inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (x));
|
|
+
|
|
+ MPFR_GROUP_CLEAR(group);
|
|
+ MPFR_TMP_FREE(marker);
|
|
+ MPFR_SAVE_EXPO_FREE (expo);
|
|
+
|
|
+ return mpfr_check_range (y, inexact, rnd_mode);
|
|
+}
|
|
diff -Naurd mpfr-3.1.3-a/src/version.c mpfr-3.1.3-b/src/version.c
|
|
--- mpfr-3.1.3-a/src/version.c 2016-02-15 15:20:16.922677881 +0000
|
|
+++ mpfr-3.1.3-b/src/version.c 2016-02-15 15:20:51.306696441 +0000
|
|
@@ -25,5 +25,5 @@
|
|
const char *
|
|
mpfr_get_version (void)
|
|
{
|
|
- return "3.1.3-p11";
|
|
+ return "3.1.3-p12";
|
|
}
|
|
diff -Naurd mpfr-3.1.3-a/tests/troot.c mpfr-3.1.3-b/tests/troot.c
|
|
--- mpfr-3.1.3-a/tests/troot.c 2015-06-19 19:55:10.000000000 +0000
|
|
+++ mpfr-3.1.3-b/tests/troot.c 2016-02-15 15:20:51.282696429 +0000
|
|
@@ -25,6 +25,19 @@
|
|
|
|
#include "mpfr-test.h"
|
|
|
|
+#define DEFN(N) \
|
|
+ static int root##N (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd) \
|
|
+ { return mpfr_root (y, x, N, rnd); } \
|
|
+ static int pow##N (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd) \
|
|
+ { return mpfr_pow_ui (y, x, N, rnd); }
|
|
+
|
|
+DEFN(2)
|
|
+DEFN(3)
|
|
+DEFN(4)
|
|
+DEFN(5)
|
|
+DEFN(17)
|
|
+DEFN(120)
|
|
+
|
|
static void
|
|
special (void)
|
|
{
|
|
@@ -52,7 +65,7 @@
|
|
exit (1);
|
|
}
|
|
|
|
- /* root(-Inf, 17) = -Inf */
|
|
+ /* root(-Inf, 17) = -Inf */
|
|
mpfr_set_inf (x, -1);
|
|
mpfr_root (y, x, 17, MPFR_RNDN);
|
|
if (!mpfr_inf_p (y) || mpfr_sgn (y) > 0)
|
|
@@ -69,7 +82,7 @@
|
|
exit (1);
|
|
}
|
|
|
|
- /* root(+/-0) = +/-0 */
|
|
+ /* root(+/-0, k) = +/-0 for k > 0 */
|
|
mpfr_set_ui (x, 0, MPFR_RNDN);
|
|
mpfr_root (y, x, 17, MPFR_RNDN);
|
|
if (mpfr_cmp_ui (y, 0) || mpfr_sgn (y) < 0)
|
|
@@ -190,64 +203,39 @@
|
|
i = mpfr_root (y, x, 1, MPFR_RNDN);
|
|
if (mpfr_cmp_ui (x, 17) || i != 0)
|
|
{
|
|
- printf ("Error in root (17^(1/1))\n");
|
|
+ printf ("Error in root for 17^(1/1)\n");
|
|
exit (1);
|
|
}
|
|
|
|
-#if 0
|
|
- /* Check for k == 0:
|
|
- For 0 <= x < 1 => +0.
|
|
- For x = 1 => 1.
|
|
- For x > 1, => +Inf.
|
|
- For x < 0 => NaN. */
|
|
- i = mpfr_root (y, x, 0, MPFR_RNDN);
|
|
- if (!MPFR_IS_INF (y) || !MPFR_IS_POS (y) || i != 0)
|
|
- {
|
|
- printf ("Error in root 17^(1/0)\n");
|
|
- exit (1);
|
|
- }
|
|
- mpfr_set_ui (x, 1, MPFR_RNDN);
|
|
- i = mpfr_root (y, x, 0, MPFR_RNDN);
|
|
- if (mpfr_cmp_ui (y, 1) || i != 0)
|
|
- {
|
|
- printf ("Error in root 1^(1/0)\n");
|
|
- exit (1);
|
|
- }
|
|
mpfr_set_ui (x, 0, MPFR_RNDN);
|
|
i = mpfr_root (y, x, 0, MPFR_RNDN);
|
|
- if (!MPFR_IS_ZERO (y) || !MPFR_IS_POS (y) || i != 0)
|
|
- {
|
|
- printf ("Error in root 0+^(1/0)\n");
|
|
- exit (1);
|
|
- }
|
|
- MPFR_CHANGE_SIGN (x);
|
|
- i = mpfr_root (y, x, 0, MPFR_RNDN);
|
|
- if (!MPFR_IS_ZERO (y) || !MPFR_IS_POS (y) || i != 0)
|
|
+ if (!MPFR_IS_NAN (y) || i != 0)
|
|
{
|
|
- printf ("Error in root 0-^(1/0)\n");
|
|
+ printf ("Error in root for (+0)^(1/0)\n");
|
|
exit (1);
|
|
}
|
|
- mpfr_set_ui_2exp (x, 17, -5, MPFR_RNDD);
|
|
+ mpfr_neg (x, x, MPFR_RNDN);
|
|
i = mpfr_root (y, x, 0, MPFR_RNDN);
|
|
- if (!MPFR_IS_ZERO (y) || !MPFR_IS_POS (y) || i != 0)
|
|
+ if (!MPFR_IS_NAN (y) || i != 0)
|
|
{
|
|
- printf ("Error in root (17/2^5)^(1/0)\n");
|
|
+ printf ("Error in root for (-0)^(1/0)\n");
|
|
exit (1);
|
|
}
|
|
-#endif
|
|
- mpfr_set_ui (x, 0, MPFR_RNDN);
|
|
+
|
|
+ mpfr_set_ui (x, 1, MPFR_RNDN);
|
|
i = mpfr_root (y, x, 0, MPFR_RNDN);
|
|
if (!MPFR_IS_NAN (y) || i != 0)
|
|
{
|
|
- printf ("Error in root 0+^(1/0)\n");
|
|
+ printf ("Error in root for 1^(1/0)\n");
|
|
exit (1);
|
|
}
|
|
+
|
|
/* Check for k==2 */
|
|
mpfr_set_si (x, -17, MPFR_RNDD);
|
|
i = mpfr_root (y, x, 2, MPFR_RNDN);
|
|
if (!MPFR_IS_NAN (y) || i != 0)
|
|
{
|
|
- printf ("Error in root (-17)^(1/2)\n");
|
|
+ printf ("Error in root for (-17)^(1/2)\n");
|
|
exit (1);
|
|
}
|
|
|
|
@@ -255,11 +243,168 @@
|
|
mpfr_clear (y);
|
|
}
|
|
|
|
+/* https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=812779
|
|
+ * https://bugzilla.gnome.org/show_bug.cgi?id=756960
|
|
+ * is a GNOME Calculator bug (mpfr_root applied on a negative integer,
|
|
+ * which is converted to an unsigned integer), but the strange result
|
|
+ * is also due to a bug in MPFR.
|
|
+ */
|
|
+static void
|
|
+bigint (void)
|
|
+{
|
|
+ mpfr_t x, y;
|
|
+
|
|
+ mpfr_inits2 (64, x, y, (mpfr_ptr) 0);
|
|
+
|
|
+ mpfr_set_ui (x, 10, MPFR_RNDN);
|
|
+ if (sizeof (unsigned long) * CHAR_BIT == 64)
|
|
+ {
|
|
+ mpfr_root (x, x, ULONG_MAX, MPFR_RNDN);
|
|
+ mpfr_set_ui_2exp (y, 1, -63, MPFR_RNDN);
|
|
+ mpfr_add_ui (y, y, 1, MPFR_RNDN);
|
|
+ if (! mpfr_equal_p (x, y))
|
|
+ {
|
|
+ printf ("Error in bigint for ULONG_MAX\n");
|
|
+ printf ("Expected ");
|
|
+ mpfr_dump (y);
|
|
+ printf ("Got ");
|
|
+ mpfr_dump (x);
|
|
+ exit (1);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ mpfr_set_ui (x, 10, MPFR_RNDN);
|
|
+ mpfr_root (x, x, 1234567890, MPFR_RNDN);
|
|
+ mpfr_set_str_binary (y,
|
|
+ "1.00000000000000000000000000001000000000101011000101000110010001");
|
|
+ if (! mpfr_equal_p (x, y))
|
|
+ {
|
|
+ printf ("Error in bigint for 1234567890\n");
|
|
+ printf ("Expected ");
|
|
+ mpfr_dump (y);
|
|
+ printf ("Got ");
|
|
+ mpfr_dump (x);
|
|
+ exit (1);
|
|
+ }
|
|
+
|
|
+ mpfr_clears (x, y, (mpfr_ptr) 0);
|
|
+}
|
|
+
|
|
#define TEST_FUNCTION mpfr_root
|
|
#define INTEGER_TYPE unsigned long
|
|
-#define INT_RAND_FUNCTION() (INTEGER_TYPE) (randlimb () % 3 +2)
|
|
+#define INT_RAND_FUNCTION() \
|
|
+ (INTEGER_TYPE) (randlimb () & 1 ? randlimb () : randlimb () % 3 + 2)
|
|
#include "tgeneric_ui.c"
|
|
|
|
+static void
|
|
+exact_powers (unsigned long bmax, unsigned long kmax)
|
|
+{
|
|
+ long b, k;
|
|
+ mpz_t z;
|
|
+ mpfr_t x, y;
|
|
+ int inex, neg;
|
|
+
|
|
+ mpz_init (z);
|
|
+ for (b = 2; b <= bmax; b++)
|
|
+ for (k = 1; k <= kmax; k++)
|
|
+ {
|
|
+ mpz_ui_pow_ui (z, b, k);
|
|
+ mpfr_init2 (x, mpz_sizeinbase (z, 2));
|
|
+ mpfr_set_ui (x, b, MPFR_RNDN);
|
|
+ mpfr_pow_ui (x, x, k, MPFR_RNDN);
|
|
+ mpz_set_ui (z, b);
|
|
+ mpfr_init2 (y, mpz_sizeinbase (z, 2));
|
|
+ for (neg = 0; neg <= 1; neg++)
|
|
+ {
|
|
+ inex = mpfr_root (y, x, k, MPFR_RNDN);
|
|
+ if (inex != 0)
|
|
+ {
|
|
+ printf ("Error in exact_powers, b=%ld, k=%ld\n", b, k);
|
|
+ printf ("Expected inex=0, got %d\n", inex);
|
|
+ exit (1);
|
|
+ }
|
|
+ if (neg && (k & 1) == 0)
|
|
+ {
|
|
+ if (!MPFR_IS_NAN (y))
|
|
+ {
|
|
+ printf ("Error in exact_powers, b=%ld, k=%ld\n", b, k);
|
|
+ printf ("Expected y=NaN\n");
|
|
+ printf ("Got ");
|
|
+ mpfr_out_str (stdout, 10, 0, y, MPFR_RNDN);
|
|
+ printf ("\n");
|
|
+ exit (1);
|
|
+ }
|
|
+ }
|
|
+ else if (MPFR_IS_NAN (y) || mpfr_cmp_si (y, b) != 0)
|
|
+ {
|
|
+ printf ("Error in exact_powers, b=%ld, k=%ld\n", b, k);
|
|
+ printf ("Expected y=%ld\n", b);
|
|
+ printf ("Got ");
|
|
+ mpfr_out_str (stdout, 10, 0, y, MPFR_RNDN);
|
|
+ printf ("\n");
|
|
+ exit (1);
|
|
+ }
|
|
+ mpfr_neg (x, x, MPFR_RNDN);
|
|
+ b = -b;
|
|
+ }
|
|
+ mpfr_clear (x);
|
|
+ mpfr_clear (y);
|
|
+ }
|
|
+ mpz_clear (z);
|
|
+}
|
|
+
|
|
+/* Compare root(x,2^h) with pow(x,2^(-h)). */
|
|
+static void
|
|
+cmp_pow (void)
|
|
+{
|
|
+ mpfr_t x, y1, y2;
|
|
+ int h;
|
|
+
|
|
+ mpfr_inits2 (128, x, y1, y2, (mpfr_ptr) 0);
|
|
+
|
|
+ for (h = 1; h < sizeof (unsigned long) * CHAR_BIT; h++)
|
|
+ {
|
|
+ unsigned long k = (unsigned long) 1 << h;
|
|
+ int i;
|
|
+
|
|
+ for (i = 0; i < 10; i++)
|
|
+ {
|
|
+ mpfr_rnd_t rnd;
|
|
+ unsigned int flags1, flags2;
|
|
+ int inex1, inex2;
|
|
+
|
|
+ tests_default_random (x, 0, __gmpfr_emin, __gmpfr_emax, 1);
|
|
+ rnd = RND_RAND ();
|
|
+ mpfr_set_ui_2exp (y1, 1, -h, MPFR_RNDN);
|
|
+ mpfr_clear_flags ();
|
|
+ inex1 = mpfr_pow (y1, x, y1, rnd);
|
|
+ flags1 = __gmpfr_flags;
|
|
+ mpfr_clear_flags ();
|
|
+ inex2 = mpfr_root (y2, x, k, rnd);
|
|
+ flags2 = __gmpfr_flags;
|
|
+ if (!(mpfr_equal_p (y1, y2) && SAME_SIGN (inex1, inex2) &&
|
|
+ flags1 == flags2))
|
|
+ {
|
|
+ printf ("Error in cmp_pow on h=%d, i=%d, rnd=%s\n",
|
|
+ h, i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd));
|
|
+ printf ("x = ");
|
|
+ mpfr_dump (x);
|
|
+ printf ("pow = ");
|
|
+ mpfr_dump (y1);
|
|
+ printf ("with inex = %d, flags =", inex1);
|
|
+ flags_out (flags1);
|
|
+ printf ("root = ");
|
|
+ mpfr_dump (y2);
|
|
+ printf ("with inex = %d, flags =", inex2);
|
|
+ flags_out (flags2);
|
|
+ exit (1);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ mpfr_clears (x, y1, y2, (mpfr_ptr) 0);
|
|
+}
|
|
+
|
|
int
|
|
main (void)
|
|
{
|
|
@@ -270,7 +415,10 @@
|
|
|
|
tests_start_mpfr ();
|
|
|
|
+ exact_powers (3, 1000);
|
|
special ();
|
|
+ bigint ();
|
|
+ cmp_pow ();
|
|
|
|
mpfr_init (x);
|
|
|
|
@@ -329,6 +477,13 @@
|
|
|
|
test_generic_ui (2, 200, 30);
|
|
|
|
+ bad_cases (root2, pow2, "mpfr_root[2]", 8, -256, 255, 4, 128, 800, 40);
|
|
+ bad_cases (root3, pow3, "mpfr_root[3]", 8, -256, 255, 4, 128, 800, 40);
|
|
+ bad_cases (root4, pow4, "mpfr_root[4]", 8, -256, 255, 4, 128, 800, 40);
|
|
+ bad_cases (root5, pow5, "mpfr_root[5]", 8, -256, 255, 4, 128, 800, 40);
|
|
+ bad_cases (root17, pow17, "mpfr_root[17]", 8, -256, 255, 4, 128, 800, 40);
|
|
+ bad_cases (root120, pow120, "mpfr_root[120]", 8, -256, 255, 4, 128, 800, 40);
|
|
+
|
|
tests_end_mpfr ();
|
|
return 0;
|
|
}
|