File.........: overview.txt Content......: Overview of how crosstool-NG works. Copyrigth....: (C) 2007 Yann E. MORIN License......: Creative Commons Attribution Share Alike (CC-by-sa), v2.5 ________________ / Introduction / _____________/ crosstool-NG aims at building toolchains. Toolchains are an essential component in a software development project. It will compile, assemble and link the code that is being developped. Some pieces of the toolchain will eventually end up in the resulting binary/ies: static libraries are but an example. So, a toolchain is a very sensitive piece of software, as any bug in one of the components, or a poorly configured component, can lead to execution problems, ranging from poor performance, to applications ending unexpectedly, to mis-behaving software (which more than often is hard to detect), to hardware damage, or even to human risks (which is more than regretable). Toolchains are made of different piece of software, each being quite complex and requiring specially crafted options to build and work seamlessly. This is usually not that easy, even in the not-so-trivial case of native toolchains. The work reaches a higher degree of complexity when it comes to cross- compilation, where it can become quite a nightmare... Some cross-toolchains exist on the internet, and can be used for general development, but they have a number of limitations: - they can be general purpose, in that they are configured for the majority: no optimisation for your specific target, - they can be prepared for a specific target and thus are not easy to use, nor optimised for, or even supporting your target, - they often are using ageing components (compiler, C library, etc...) not supporting special features of your shiny new processor; On the other side, these toolchain offer some advantages: - they are ready to use and quite easy to install and setup, - they are proven if used by a wide community. But once you want to get all the juice out of your specific hardware, you will want to build your own toolchain. This is where crosstool-NG comes into play. There are also a number of tools that builds toolchains for specific needs, which is not really scalable. Examples are: - buildroot (buildroot.uclibc.org) whose main puprpose is to build root file systems, hence the name. But once you have your toolchain with buildroot, part of it is installed in the root-to-be, so if you want to build a whole new root, you either have to save the existing one as a template and restore it later, or restart again from scratch. This is not convenient, - ptxdist (www.pengutronix.de/software/ptxdist), whose purpose is very similar to buildroot, - other projects (openembeded.org for example), which is again used to build root file systems. crosstool-NG is really targetted at building toolchains, and only toolchains. It is then up to you to use it the way you want. ___________ / History / ________/ crosstool was first 'conceived' by Dan Kegel, which offered it to the community, as a set of scripts, a repository of patches, and some pre-configured, general purpose setup files to be used to configure crosstool. This is available at http://www.kegel.com/crosstool, and the subversion repository is hosted on google at http://code.google.com/p/crosstool/. At the time of writing, crosstool only supports building with one C library, namely glibc, and one C compiler, gcc; it is cripled with historical support for legacy components, and is some kind of a mess to upgrade. Also, submited patches take a loooong time before they are integrated mainline. I once managed to add support for uClibc-based toolchains, but it did not make into mainline, mostly because I don't have time to port the patch forward to the new versions, due in part to the big effort it was taking. So I decided to clean up crosstool in the state it was, re-order the things in place, and add appropriate support for what I needed, that is uClibc support. That was a disaster, as inclusion into mainline is slow as hell, and the changes were so numerous. The only option left to me was rewrite crosstool from scratch. I decided to go this way, and name the new implementation crosstool-NG, standing for crosstool Next Generation, as many other comunity projects do, and as a wink at the TV series "Star Trek: The Next Generation". ;-) ____________________________ / Configuring crosstool-NG / _________________________/ crosstool-NG is configured the same way you configure your Linux kernel: by using a curses-based menu. It is assumed you now how to handle this. To enter the menu, type: ct-ng menuconfig Almost every config item has a help entry. Read them carefully. String and number options can refer to environment variables. In such a case, you must use the shell syntax: ${VAR}. You shall neither single- nor double- quote the string options. There are three environment variables that are computed by crosstool-NG, and that you can use: CT_TARGET: It represents the target triplet you are building for. You can use it for example in the installation/prefix directory, such as: /opt/x-tools/${CT_TARGET} CT_TOP_DIR: The top directory where crosstool-NG is running. You shouldn't need it in most cases. There is one case where you may need it: if you have local patches and you store them in your running directory, you can refer to them by using CT_TOP_DIR, such as: ${CT_TOP_DIR}/patches.myproject CT_VERSION: The version of crosstool-NG you are using. Not much use for you, but it's there if you need it. Interesting config options | ---------------------------* CT_LOCAL_TARBALLS_DIR: If you already have sone tarballs in a direcotry, enter it here. That will speed up the retrieving phase, where crosstool-NG would otherwise download those tarballs. CT_PREFIX_DIR: This is where the toolchain will be installed in (and for now, where it will run from). CT_TARGET_VENDOR: An identifier for your toolchain, will take place in the vendor part of the target triplet. It shall *not* contain spaces or dashes. Usually, keep it to a one-word string, or use underscores to separate words if you need. Avoid dots, commas, and special characters. CT_TARGET_ALIAS: An alias for the toolchian. It will be used as a prefix to the toolchain tools. For example, you will have ${CT_TARGET_ALIAS}-gcc Also, if you think you don't see enough versions, you can try to enable one of those: CT_OBSOLETE: Show obsolete versions or tools. Most of the time, you don't want to base your toolchain on too old a version (of gcc, for example). But at times, it can come handy to use such an old version for regression tests. Those old versions are hidden behind CT_BSOLETE. CT_EXPERIMENTAL: Show experimental versions or tools. Again, you might not want to base your toolchain on too recent tools (eg. gcc) for production. But if you need a feature present only in a recent version, or a new tool, you can find them hidden behind CT_EXPERIMENTAL. CT_BROKEN: Show broken versions or tools. Some usefull tools are currently broken: they won't compile, run, or worse, cause defects when running. But if you are brave enough, you can try and debug them. They are hidden behind CT_BROKEN, which itself is hiddent behind EXPERIMENTAL. ________________________ / Running crosstool-NG / _____________________/ crosstool-NG is configured by a configurator presenting a menu-stuctured set of options. These options let you specify the way you want your toolchain built, where you want it installed, what architecture and specific processor it will support, the version of the components you want to use, etc... The value for those options are then stored in a configuration file. To build the toolchain, simply type: ct-ng build This will use the above configuration to retrieve, extract and patch the components, build, install and eventually test your newly built toolchain. You are then free to add the toolchain /bin directory in your PATH to use it at will. In any case, you can get some terse help. Just type: ct-ng help or: man 1 ct-ng Stoping and restarting a build | -------------------------------* If you want to stop the build after a step you are debugging, you can pass the variable STOP to make: ct-ng STOP=some_step Conversely, if you want to restart a build at a specific step you are debugging, you can pass the RESTART variable to make: ct-ng RESTART=some_step Alternatively, you can call make with the name of a step to just do that step: ct-ng libc_headers is equivalent to: ct-ng RESTART=libs_headers STOP=libc_headers The shortcuts -step_name and step_name- allow to respectively stop or restart at that step. Thus: ct-ng -libc_headers and: ct-ng libc_headers- are equivalent to: ct-ng STOP=libc_headers and: ct-ng RESTART=libc_headers To obtain the list of acceptable steps, please call: ct-ng liststeps Note that in order to restart a build, you'll have to say 'Y' to the config option CT_DEBUG_CT_SAVE_STEPS, and that the previous build effectively went that far. Testing all toolchains at once | -------------------------------* You can test-build all samples; simply call: ct-ng regtest _______________________ / Using the toolchain / ____________________/ Using the toolchain is as simple as adding the toolchain's bin directory in your PATH, such as: export PATH="${PATH}:/your/toolchain/path/bin" and then using the target triplet to tell the build systems to use your toolchain: ./configure --target=your-target-triplet make CC=your-target-triplet-gcc make CROSS_COMPILE=your-target-triplet- and so on... When your root directory is ready, it is still missing some important bits: the toolchain's libraries. To populate your root directory with those libs, just run: your-target-triplet-populate -s /your/root -d /your/root-populated This will copy /your/root into /your/root-populated, and put the needed and only the needed libraries there. Thus you don't polute /your/root with any cruft that would no longer be needed should you have to remove stuff. /your/root always contains only those things you install in it. You can then use /your/root-populated to build up your file system image, a tarball, or to NFS-mount it from your target, or whatever you need. ___________________ / Toolchain types / ________________/ There are four kinds of toolchains you could encounter. First off, you must understand the following: when it comes to compilers there are up to four machines involved: 1) the machine configuring the toolchain components: the config machine 2) the machine building the toolchain components: the build machine 3) the machine running the toolchain: the host machine 4) the machine the toolchain is generating code for: the target machine We can most of the time assume that the config machine and the build machine are the same. Most of the time, this will be true. The only time it isn't is if you're using distributed compilation (such as distcc). Let's forget this for the sake of simplicity. So we're left with three machines: - build - host - target Any toolchain will involve those three machines. You can be as pretty sure of this as "2 and 2 are 4". Here is how they come into play: 1) build == host == target This is a plain native toolchain, targetting the exact same machine as the one it is built on, and running again on this exact same machine. You have to build such a toolchain when you want to use an updated component, such as a newer gcc for example. crosstool-NG calls it "native". 2) build == host != target This is a classic cross-toolchain, which is expected to be run on the same machine it is compiled on, and generate code to run on a second machine, the target. crosstool-NG calls it "cross". 3) build != host == target Such a toolchain is also a native toolchain, as it targets the same machine as it runs on. But it is build on another machine. You want such a toolchain when porting to a new architecture, or if the build machine is much faster than the host machine. crosstool-NG calls it "cross-native". 4) build != host != target This one is called a canadian-toolchain (*), and is tricky. The three machines in play are different. You might want such a toolchain if you have a fast build machine, but the users will use it on another machine, and will produce code to run on a third machine. crosstool-NG calls it "canadian". crosstool-NG can build all these kinds of toolchains (or is aiming at it, anyway!) (*) The term Canadian Cross came about because at the time that these issues were all being hashed out, Canada had three national political parties. http://en.wikipedia.org/wiki/Cross_compiler _____________ / Internals / __________/ Internally, crosstool-NG is script-based. To ease usage, the frontend is Makefile-based. Makefile front-end | -------------------* The entry point to crosstool-NG is the Makefile script "ct-ng". Calling this script with an action will act exactly as if the Makefile was in the current working directory and make was called with the action as rule. Thus: ct-ng menuconfig is equivalent to having the Makefile in CWD, and calling: make menuconfig Having ct-ng as it is avoids copying the Makefile everywhere, and acts as a traditional command. ct-ng loads sub- Makefiles from the library directory $(CT_LIB_DIR), as set up at configuration time with ./configure. ct-ng also search for config files, sub-tools, samples, scripts and patches in that library directory. Kconfig parser | ---------------* The kconfig language is a hacked version, vampirised from the toybox project by Rob LANDLEY (http://www.landley.net/code/toybox/), itself coming from the Linux kernel (http://www.linux.org/ http://www.kernel.org/), and (heavily) adapted to my needs. The kconfig parsers (conf and mconf) are not installed pre-built, but as source files. Thus you can have the directory where crosstool-NG is installed, exported (via NFS or whatever) and have clients with different architectures use the same crosstool-NG installation, and most notably, the same set of patches. Build scripts | --------------* To Be Written later...