crosstool-ng/patches/mpfr/3.1.3/110-lngamma-and-doc.patch

1118 lines
58 KiB
Diff
Raw Normal View History

diff -Naurd mpfr-3.1.3-a/PATCHES mpfr-3.1.3-b/PATCHES
--- mpfr-3.1.3-a/PATCHES 2015-07-02 10:49:23.950112879 +0000
+++ mpfr-3.1.3-b/PATCHES 2015-07-02 10:49:24.042113845 +0000
@@ -0,0 +1 @@
+lngamma-and-doc
diff -Naurd mpfr-3.1.3-a/VERSION mpfr-3.1.3-b/VERSION
--- mpfr-3.1.3-a/VERSION 2015-06-19 19:55:09.000000000 +0000
+++ mpfr-3.1.3-b/VERSION 2015-07-02 10:49:24.042113845 +0000
@@ -1 +1 @@
-3.1.3
+3.1.3-p1
diff -Naurd mpfr-3.1.3-a/doc/mpfr.texi mpfr-3.1.3-b/doc/mpfr.texi
--- mpfr-3.1.3-a/doc/mpfr.texi 2015-06-19 19:55:11.000000000 +0000
+++ mpfr-3.1.3-b/doc/mpfr.texi 2015-07-02 10:49:24.018113593 +0000
@@ -810,13 +810,17 @@
When the input point is in the closure of the domain of the mathematical
function and an input argument is +0 (resp.@: @minus{}0), one considers
the limit when the corresponding argument approaches 0 from above
-(resp.@: below). If the limit is not defined (e.g., @code{mpfr_log} on
-@minus{}0), the behavior is specified in the description of the MPFR function.
+(resp.@: below), if possible. If the limit is not defined (e.g.,
+@code{mpfr_sqrt} and @code{mpfr_log} on @minus{}0), the behavior is
+specified in the description of the MPFR function, but must be consistent
+with the rule from the above paragraph (e.g., @code{mpfr_log} on @pom{}0
+gives @minus{}Inf).
When the result is equal to 0, its sign is determined by considering the
limit as if the input point were not in the domain: If one approaches 0
from above (resp.@: below), the result is +0 (resp.@: @minus{}0);
-for example, @code{mpfr_sin} on +0 gives +0.
+for example, @code{mpfr_sin} on @minus{}0 gives @minus{}0 and
+@code{mpfr_acos} on 1 gives +0 (in all rounding modes).
In the other cases, the sign is specified in the description of the MPFR
function; for example @code{mpfr_max} on @minus{}0 and +0 gives +0.
@@ -832,8 +836,8 @@
@c that advantages in practice), like for any bug fix.
Example: @code{mpfr_hypot} on (NaN,0) gives NaN, but @code{mpfr_hypot}
on (NaN,+Inf) gives +Inf (as specified in @ref{Special Functions}),
-since for any finite input @var{x}, @code{mpfr_hypot} on (@var{x},+Inf)
-gives +Inf.
+since for any finite or infinite input @var{x}, @code{mpfr_hypot} on
+(@var{x},+Inf) gives +Inf.
@node Exceptions, Memory Handling, Floating-Point Values on Special Numbers, MPFR Basics
@comment node-name, next, previous, up
@@ -1581,7 +1585,8 @@
@deftypefunx int mpfr_add_z (mpfr_t @var{rop}, mpfr_t @var{op1}, mpz_t @var{op2}, mpfr_rnd_t @var{rnd})
@deftypefunx int mpfr_add_q (mpfr_t @var{rop}, mpfr_t @var{op1}, mpq_t @var{op2}, mpfr_rnd_t @var{rnd})
Set @var{rop} to @math{@var{op1} + @var{op2}} rounded in the direction
-@var{rnd}. For types having no signed zero, it is considered unsigned
+@var{rnd}. The IEEE-754 rules are used, in particular for signed zeros.
+But for types having no signed zeros, 0 is considered unsigned
(i.e., (+0) + 0 = (+0) and (@minus{}0) + 0 = (@minus{}0)).
The @code{mpfr_add_d} function assumes that the radix of the @code{double} type
is a power of 2, with a precision at most that declared by the C implementation
@@ -1599,7 +1604,8 @@
@deftypefunx int mpfr_sub_z (mpfr_t @var{rop}, mpfr_t @var{op1}, mpz_t @var{op2}, mpfr_rnd_t @var{rnd})
@deftypefunx int mpfr_sub_q (mpfr_t @var{rop}, mpfr_t @var{op1}, mpq_t @var{op2}, mpfr_rnd_t @var{rnd})
Set @var{rop} to @math{@var{op1} - @var{op2}} rounded in the direction
-@var{rnd}. For types having no signed zero, it is considered unsigned
+@var{rnd}. The IEEE-754 rules are used, in particular for signed zeros.
+But for types having no signed zeros, 0 is considered unsigned
(i.e., (+0) @minus{} 0 = (+0), (@minus{}0) @minus{} 0 = (@minus{}0),
0 @minus{} (+0) = (@minus{}0) and 0 @minus{} (@minus{}0) = (+0)).
The same restrictions than for @code{mpfr_add_d} apply to @code{mpfr_d_sub}
@@ -1615,7 +1621,7 @@
Set @var{rop} to @math{@var{op1} @GMPtimes{} @var{op2}} rounded in the
direction @var{rnd}.
When a result is zero, its sign is the product of the signs of the operands
-(for types having no signed zero, it is considered positive).
+(for types having no signed zeros, 0 is considered positive).
The same restrictions than for @code{mpfr_add_d} apply to @code{mpfr_mul_d}.
@end deftypefun
@@ -1635,7 +1641,7 @@
@deftypefunx int mpfr_div_q (mpfr_t @var{rop}, mpfr_t @var{op1}, mpq_t @var{op2}, mpfr_rnd_t @var{rnd})
Set @var{rop} to @math{@var{op1}/@var{op2}} rounded in the direction @var{rnd}.
When a result is zero, its sign is the product of the signs of the operands
-(for types having no signed zero, it is considered positive).
+(for types having no signed zeros, 0 is considered positive).
The same restrictions than for @code{mpfr_add_d} apply to @code{mpfr_d_div}
and @code{mpfr_div_d}.
@end deftypefun
@@ -1643,15 +1649,18 @@
@deftypefun int mpfr_sqrt (mpfr_t @var{rop}, mpfr_t @var{op}, mpfr_rnd_t @var{rnd})
@deftypefunx int mpfr_sqrt_ui (mpfr_t @var{rop}, unsigned long int @var{op}, mpfr_rnd_t @var{rnd})
Set @var{rop} to @m{\sqrt{@var{op}}, the square root of @var{op}}
-rounded in the direction @var{rnd} (set @var{rop} to @minus{}0 if @var{op} is
-@minus{}0, to be consistent with the IEEE 754 standard).
+rounded in the direction @var{rnd}. Set @var{rop} to @minus{}0 if
+@var{op} is @minus{}0, to be consistent with the IEEE 754 standard.
Set @var{rop} to NaN if @var{op} is negative.
@end deftypefun
@deftypefun int mpfr_rec_sqrt (mpfr_t @var{rop}, mpfr_t @var{op}, mpfr_rnd_t @var{rnd})
Set @var{rop} to @m{1/\sqrt{@var{op}}, the reciprocal square root of @var{op}}
-rounded in the direction @var{rnd}. Set @var{rop} to +Inf if @var{op} is
-@pom{}0, +0 if @var{op} is +Inf, and NaN if @var{op} is negative.
+rounded in the direction @var{rnd}. Set @var{rop} to +Inf if @var{op} is
+@pom{}0, +0 if @var{op} is +Inf, and NaN if @var{op} is negative. Warning!
+Therefore the result on @minus{}0 is different from the one of the rSqrt
+function recommended by the IEEE 754-2008 standard (Section 9.2.1), which
+is @minus{}Inf instead of +Inf.
@end deftypefun
@deftypefun int mpfr_cbrt (mpfr_t @var{rop}, mpfr_t @var{op}, mpfr_rnd_t @var{rnd})
@@ -1832,7 +1841,9 @@
@m{\log_2 @var{op}, log2(@var{op})} or
@m{\log_{10} @var{op}, log10(@var{op})}, respectively,
rounded in the direction @var{rnd}.
-Set @var{rop} to @minus{}Inf if @var{op} is @minus{}0
+Set @var{rop} to +0 if @var{op} is 1 (in all rounding modes),
+for consistency with the ISO C99 and IEEE 754-2008 standards.
+Set @var{rop} to @minus{}Inf if @var{op} is @pom{}0
(i.e., the sign of the zero has no influence on the result).
@end deftypefun
@@ -2003,8 +2014,11 @@
@deftypefun int mpfr_lngamma (mpfr_t @var{rop}, mpfr_t @var{op}, mpfr_rnd_t @var{rnd})
Set @var{rop} to the value of the logarithm of the Gamma function on @var{op},
rounded in the direction @var{rnd}.
-When @math{@minus{}2@var{k}@minus{}1 @le{} @var{op} @le{} @minus{}2@var{k}},
-@var{k} being a non-negative integer, @var{rop} is set to NaN.
+When @var{op} is 1 or 2, set @var{rop} to +0 (in all rounding modes).
+When @var{op} is an infinity or a nonpositive integer, set @var{rop} to +Inf,
+following the general rules on special values.
+When @math{@minus{}2@var{k}@minus{}1 < @var{op} < @minus{}2@var{k}},
+@var{k} being a nonnegative integer, set @var{rop} to NaN@.
See also @code{mpfr_lgamma}.
@end deftypefun
@@ -2012,10 +2026,11 @@
Set @var{rop} to the value of the logarithm of the absolute value of the
Gamma function on @var{op}, rounded in the direction @var{rnd}. The sign
(1 or @minus{}1) of Gamma(@var{op}) is returned in the object pointed to
-by @var{signp}. When @var{op} is an infinity or a non-positive integer, set
-@var{rop} to +Inf. When @var{op} is NaN, @minus{}Inf or a negative integer,
-*@var{signp} is undefined, and when @var{op} is @pom{}0, *@var{signp} is
-the sign of the zero.
+by @var{signp}.
+When @var{op} is 1 or 2, set @var{rop} to +0 (in all rounding modes).
+When @var{op} is an infinity or a nonpositive integer, set @var{rop} to +Inf.
+When @var{op} is NaN, @minus{}Inf or a negative integer, *@var{signp} is
+undefined, and when @var{op} is @pom{}0, *@var{signp} is the sign of the zero.
@end deftypefun
@deftypefun int mpfr_digamma (mpfr_t @var{rop}, mpfr_t @var{op}, mpfr_rnd_t @var{rnd})
@@ -2064,7 +2079,10 @@
@deftypefunx int mpfr_fms (mpfr_t @var{rop}, mpfr_t @var{op1}, mpfr_t @var{op2}, mpfr_t @var{op3}, mpfr_rnd_t @var{rnd})
Set @var{rop} to @math{(@var{op1} @GMPtimes{} @var{op2}) + @var{op3}}
(resp.@: @math{(@var{op1} @GMPtimes{} @var{op2}) - @var{op3}})
-rounded in the direction @var{rnd}.
+rounded in the direction @var{rnd}. Concerning special values (signed zeros,
+infinities, NaN), these functions behave like a multiplication followed by a
+separate addition or subtraction. That is, the fused operation matters only
+for rounding.
@end deftypefun
@deftypefun int mpfr_agm (mpfr_t @var{rop}, mpfr_t @var{op1}, mpfr_t @var{op2}, mpfr_rnd_t @var{rnd})
@@ -2089,8 +2107,8 @@
i.e., $\sqrt{x^2+y^2}$,
@end tex
rounded in the direction @var{rnd}.
-Special values are handled as described in Section F.9.4.3 of
-the ISO C99 and IEEE 754-2008 standards:
+Special values are handled as described in the ISO C99 (Section F.9.4.3)
+and IEEE 754-2008 (Section 9.2.1) standards:
If @var{x} or @var{y} is an infinity, then +Inf is returned in @var{rop},
even if the other number is NaN.
@end deftypefun
diff -Naurd mpfr-3.1.3-a/doc/mpfr.info mpfr-3.1.3-b/doc/mpfr.info
--- mpfr-3.1.3-a/doc/mpfr.info 2015-06-19 19:55:53.000000000 +0000
+++ mpfr-3.1.3-b/doc/mpfr.info 2015-07-02 10:49:38.718267817 +0000
@@ -1,4 +1,4 @@
-This is mpfr.info, produced by makeinfo version 5.2 from mpfr.texi.
+This is mpfr.info, produced by makeinfo version 6.0 from mpfr.texi.
This manual documents how to install and use the Multiple Precision
Floating-Point Reliable Library, version 3.1.3.
@@ -55,7 +55,7 @@
MPFR Copying Conditions
***********************
-The GNU MPFR library (or MPFR for short) is "free"; this means that
+The GNU MPFR library (or MPFR for short) is “free”; this means that
everyone is free to use it and free to redistribute it on a free basis.
The library is not in the public domain; it is copyrighted and there are
restrictions on its distribution, but these restrictions are designed to
@@ -418,7 +418,7 @@
4.2 Nomenclature and Types
==========================
-A "floating-point number", or "float" for short, is an arbitrary
+A “floating-point number”, or “float” for short, is an arbitrary
precision significand (also called mantissa) with a limited precision
exponent. The C data type for such objects is mpfr_t (internally
defined as a one-element array of a structure, and mpfr_ptr is the C
@@ -432,7 +432,7 @@
to the other functions supported by MPFR. Unless documented otherwise,
the sign bit of a NaN is unspecified.
-The "precision" is the number of bits used to represent the significand
+The “precision” is the number of bits used to represent the significand
of a floating-point number; the corresponding C data type is
mpfr_prec_t. The precision can be any integer between MPFR_PREC_MIN
and MPFR_PREC_MAX. In the current implementation, MPFR_PREC_MIN is
@@ -446,7 +446,7 @@
may abort, crash or have undefined behavior (depending on your C
implementation).
-The "rounding mode" specifies the way to round the result of a
+The “rounding mode” specifies the way to round the result of a
floating-point operation, in case the exact result can not be
represented exactly in the destination significand; the corresponding C
data type is mpfr_rnd_t.
@@ -499,14 +499,14 @@
representable numbers, it is rounded to the one with the least
significant bit set to zero. For example, the number 2.5, which is
represented by (10.1) in binary, is rounded to (10.0)=2 with a precision
-of two bits, and not to (11.0)=3. This rule avoids the "drift"
+of two bits, and not to (11.0)=3. This rule avoids the “drift”
phenomenon mentioned by Knuth in volume 2 of The Art of Computer
Programming (Section 4.2.2).
Most MPFR functions take as first argument the destination variable,
as second and following arguments the input variables, as last argument
a rounding mode, and have a return value of type int, called the
-"ternary value". The value stored in the destination variable is
+“ternary value”. The value stored in the destination variable is
correctly rounded, i.e., MPFR behaves as if it computed the result with
an infinite precision, then rounded it to the precision of this
variable. The input variables are regarded as exact (in particular,
@@ -572,15 +572,18 @@
When the input point is in the closure of the domain of the
mathematical function and an input argument is +0 (resp. 0), one
considers the limit when the corresponding argument approaches 0 from
-above (resp. below). If the limit is not defined (e.g., mpfr_log on
-0), the behavior is specified in the description of the MPFR function.
+above (resp. below), if possible. If the limit is not defined (e.g.,
+mpfr_sqrt and mpfr_log on 0), the behavior is specified in the
+description of the MPFR function, but must be consistent with the rule
+from the above paragraph (e.g., mpfr_log on ±0 gives Inf).
When the result is equal to 0, its sign is determined by considering
the limit as if the input point were not in the domain: If one
approaches 0 from above (resp. below), the result is +0 (resp. 0); for
-example, mpfr_sin on +0 gives +0. In the other cases, the sign is
-specified in the description of the MPFR function; for example
-mpfr_max on 0 and +0 gives +0.
+example, mpfr_sin on 0 gives 0 and mpfr_acos on 1 gives +0 (in all
+rounding modes). In the other cases, the sign is specified in the
+description of the MPFR function; for example mpfr_max on 0 and +0
+gives +0.
When the input point is not in the closure of the domain of the
function, the result is NaN. Example: mpfr_sqrt on 17 gives NaN.
@@ -590,8 +593,8 @@
numbers; such a case is always explicitly specified in *note MPFR
Interface::. Example: mpfr_hypot on (NaN,0) gives NaN, but
mpfr_hypot on (NaN,+Inf) gives +Inf (as specified in *note Special
-Functions::), since for any finite input X, mpfr_hypot on (X,+Inf)
-gives +Inf.
+Functions::), since for any finite or infinite input X, mpfr_hypot on
+(X,+Inf) gives +Inf.

File: mpfr.info, Node: Exceptions, Next: Memory Handling, Prev: Floating-Point Values on Special Numbers, Up: MPFR Basics
@@ -1253,8 +1256,9 @@
mpfr_rnd_t RND)
-- Function: int mpfr_add_q (mpfr_t ROP, mpfr_t OP1, mpq_t OP2,
mpfr_rnd_t RND)
- Set ROP to OP1 + OP2 rounded in the direction RND. For types
- having no signed zero, it is considered unsigned (i.e., (+0) + 0 =
+ Set ROP to OP1 + OP2 rounded in the direction RND. The IEEE-754
+ rules are used, in particular for signed zeros. But for types
+ having no signed zeros, 0 is considered unsigned (i.e., (+0) + 0 =
(+0) and (0) + 0 = (0)). The mpfr_add_d function assumes that
the radix of the double type is a power of 2, with a precision at
most that declared by the C implementation (macro
@@ -1280,8 +1284,9 @@
mpfr_rnd_t RND)
-- Function: int mpfr_sub_q (mpfr_t ROP, mpfr_t OP1, mpq_t OP2,
mpfr_rnd_t RND)
- Set ROP to OP1 - OP2 rounded in the direction RND. For types
- having no signed zero, it is considered unsigned (i.e., (+0) 0 =
+ Set ROP to OP1 - OP2 rounded in the direction RND. The IEEE-754
+ rules are used, in particular for signed zeros. But for types
+ having no signed zeros, 0 is considered unsigned (i.e., (+0) 0 =
(+0), (0) 0 = (0), 0 (+0) = (0) and 0 (0) = (+0)). The
same restrictions than for mpfr_add_d apply to mpfr_d_sub and
mpfr_sub_d.
@@ -1300,7 +1305,7 @@
mpfr_rnd_t RND)
Set ROP to OP1 times OP2 rounded in the direction RND. When a
result is zero, its sign is the product of the signs of the
- operands (for types having no signed zero, it is considered
+ operands (for types having no signed zeros, 0 is considered
positive). The same restrictions than for mpfr_add_d apply to
mpfr_mul_d.
@@ -1327,21 +1332,24 @@
mpfr_rnd_t RND)
Set ROP to OP1/OP2 rounded in the direction RND. When a result is
zero, its sign is the product of the signs of the operands (for
- types having no signed zero, it is considered positive). The same
+ types having no signed zeros, 0 is considered positive). The same
restrictions than for mpfr_add_d apply to mpfr_d_div and
mpfr_div_d.
-- Function: int mpfr_sqrt (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
-- Function: int mpfr_sqrt_ui (mpfr_t ROP, unsigned long int OP,
mpfr_rnd_t RND)
- Set ROP to the square root of OP rounded in the direction RND (set
- ROP to 0 if OP is 0, to be consistent with the IEEE 754
- standard). Set ROP to NaN if OP is negative.
+ Set ROP to the square root of OP rounded in the direction RND. Set
+ ROP to 0 if OP is 0, to be consistent with the IEEE 754 standard.
+ Set ROP to NaN if OP is negative.
-- Function: int mpfr_rec_sqrt (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
Set ROP to the reciprocal square root of OP rounded in the
direction RND. Set ROP to +Inf if OP is ±0, +0 if OP is +Inf, and
- NaN if OP is negative.
+ NaN if OP is negative. Warning! Therefore the result on 0 is
+ different from the one of the rSqrt function recommended by the
+ IEEE 754-2008 standard (Section 9.2.1), which is Inf instead of
+ +Inf.
-- Function: int mpfr_cbrt (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
-- Function: int mpfr_root (mpfr_t ROP, mpfr_t OP, unsigned long int K,
@@ -1515,8 +1523,10 @@
-- Function: int mpfr_log2 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
-- Function: int mpfr_log10 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
Set ROP to the natural logarithm of OP, log2(OP) or log10(OP),
- respectively, rounded in the direction RND. Set ROP to Inf if OP
- is 0 (i.e., the sign of the zero has no influence on the result).
+ respectively, rounded in the direction RND. Set ROP to +0 if OP is
+ 1 (in all rounding modes), for consistency with the ISO C99 and
+ IEEE 754-2008 standards. Set ROP to Inf if OP is ±0 (i.e., the
+ sign of the zero has no influence on the result).
-- Function: int mpfr_exp (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
-- Function: int mpfr_exp2 (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
@@ -1649,17 +1659,21 @@
-- Function: int mpfr_lngamma (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
Set ROP to the value of the logarithm of the Gamma function on OP,
- rounded in the direction RND. When 2K1 <= OP <= 2K, K being a
- non-negative integer, ROP is set to NaN. See also mpfr_lgamma.
+ rounded in the direction RND. When OP is 1 or 2, set ROP to +0 (in
+ all rounding modes). When OP is an infinity or a nonpositive
+ integer, set ROP to +Inf, following the general rules on special
+ values. When 2K1 < OP < 2K, K being a nonnegative integer, set
+ ROP to NaN. See also mpfr_lgamma.
-- Function: int mpfr_lgamma (mpfr_t ROP, int *SIGNP, mpfr_t OP,
mpfr_rnd_t RND)
Set ROP to the value of the logarithm of the absolute value of the
Gamma function on OP, rounded in the direction RND. The sign (1 or
1) of Gamma(OP) is returned in the object pointed to by SIGNP.
- When OP is an infinity or a non-positive integer, set ROP to +Inf.
- When OP is NaN, Inf or a negative integer, *SIGNP is undefined,
- and when OP is ±0, *SIGNP is the sign of the zero.
+ When OP is 1 or 2, set ROP to +0 (in all rounding modes). When OP
+ is an infinity or a nonpositive integer, set ROP to +Inf. When OP
+ is NaN, Inf or a negative integer, *SIGNP is undefined, and when
+ OP is ±0, *SIGNP is the sign of the zero.
-- Function: int mpfr_digamma (mpfr_t ROP, mpfr_t OP, mpfr_rnd_t RND)
Set ROP to the value of the Digamma (sometimes also called Psi)
@@ -1703,7 +1717,10 @@
-- Function: int mpfr_fms (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2, mpfr_t
OP3, mpfr_rnd_t RND)
Set ROP to (OP1 times OP2) + OP3 (resp. (OP1 times OP2) - OP3)
- rounded in the direction RND.
+ rounded in the direction RND. Concerning special values (signed
+ zeros, infinities, NaN), these functions behave like a
+ multiplication followed by a separate addition or subtraction.
+ That is, the fused operation matters only for rounding.
-- Function: int mpfr_agm (mpfr_t ROP, mpfr_t OP1, mpfr_t OP2,
mpfr_rnd_t RND)
@@ -1717,9 +1734,10 @@
RND)
Set ROP to the Euclidean norm of X and Y, i.e., the square root of
the sum of the squares of X and Y, rounded in the direction RND.
- Special values are handled as described in Section F.9.4.3 of the
- ISO C99 and IEEE 754-2008 standards: If X or Y is an infinity, then
- +Inf is returned in ROP, even if the other number is NaN.
+ Special values are handled as described in the ISO C99 (Section
+ F.9.4.3) and IEEE 754-2008 (Section 9.2.1) standards: If X or Y is
+ an infinity, then +Inf is returned in ROP, even if the other number
+ is NaN.
-- Function: int mpfr_ai (mpfr_t ROP, mpfr_t X, mpfr_rnd_t RND)
Set ROP to the value of the Airy function Ai on X, rounded in the
@@ -2670,7 +2688,7 @@
5.16 Internals
==============
-A "limb" means the part of a multi-precision number that fits in a
+A “limb” means the part of a multi-precision number that fits in a
single word. Usually a limb contains 32 or 64 bits. The C data type
for a limb is mp_limb_t.
@@ -3140,7 +3158,7 @@
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
- functional and useful document "free" in the sense of freedom: to
+ functional and useful document “free” in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the
@@ -3655,9 +3673,9 @@
* Menu:
* mpfr_abs: Basic Arithmetic Functions.
- (line 160)
-* mpfr_acos: Special Functions. (line 51)
-* mpfr_acosh: Special Functions. (line 115)
+ (line 165)
+* mpfr_acos: Special Functions. (line 53)
+* mpfr_acosh: Special Functions. (line 117)
* mpfr_add: Basic Arithmetic Functions.
(line 6)
* mpfr_add_d: Basic Arithmetic Functions.
@@ -3670,15 +3688,15 @@
(line 8)
* mpfr_add_z: Basic Arithmetic Functions.
(line 14)
-* mpfr_agm: Special Functions. (line 210)
-* mpfr_ai: Special Functions. (line 226)
-* mpfr_asin: Special Functions. (line 52)
-* mpfr_asinh: Special Functions. (line 116)
+* mpfr_agm: Special Functions. (line 219)
+* mpfr_ai: Special Functions. (line 236)
+* mpfr_asin: Special Functions. (line 54)
+* mpfr_asinh: Special Functions. (line 118)
* mpfr_asprintf: Formatted Output Functions.
(line 193)
-* mpfr_atan: Special Functions. (line 53)
-* mpfr_atan2: Special Functions. (line 63)
-* mpfr_atanh: Special Functions. (line 117)
+* mpfr_atan: Special Functions. (line 55)
+* mpfr_atan2: Special Functions. (line 65)
+* mpfr_atanh: Special Functions. (line 119)
* mpfr_buildopt_decimal_p: Miscellaneous Functions.
(line 162)
* mpfr_buildopt_gmpinternals_p: Miscellaneous Functions.
@@ -3690,7 +3708,7 @@
* mpfr_can_round: Rounding Related Functions.
(line 39)
* mpfr_cbrt: Basic Arithmetic Functions.
- (line 108)
+ (line 113)
* mpfr_ceil: Integer Related Functions.
(line 7)
* mpfr_check_range: Exception Related Functions.
@@ -3735,18 +3753,18 @@
(line 27)
* mpfr_cmp_z: Comparison Functions.
(line 11)
-* mpfr_const_catalan: Special Functions. (line 237)
-* mpfr_const_euler: Special Functions. (line 236)
-* mpfr_const_log2: Special Functions. (line 234)
-* mpfr_const_pi: Special Functions. (line 235)
+* mpfr_const_catalan: Special Functions. (line 247)
+* mpfr_const_euler: Special Functions. (line 246)
+* mpfr_const_log2: Special Functions. (line 244)
+* mpfr_const_pi: Special Functions. (line 245)
* mpfr_copysign: Miscellaneous Functions.
(line 109)
-* mpfr_cos: Special Functions. (line 29)
-* mpfr_cosh: Special Functions. (line 95)
-* mpfr_cot: Special Functions. (line 47)
-* mpfr_coth: Special Functions. (line 111)
-* mpfr_csc: Special Functions. (line 46)
-* mpfr_csch: Special Functions. (line 110)
+* mpfr_cos: Special Functions. (line 31)
+* mpfr_cosh: Special Functions. (line 97)
+* mpfr_cot: Special Functions. (line 49)
+* mpfr_coth: Special Functions. (line 113)
+* mpfr_csc: Special Functions. (line 48)
+* mpfr_csch: Special Functions. (line 112)
* mpfr_custom_get_exp: Custom Interface. (line 75)
* mpfr_custom_get_kind: Custom Interface. (line 65)
* mpfr_custom_get_significand: Custom Interface. (line 70)
@@ -3756,47 +3774,47 @@
* mpfr_custom_move: Custom Interface. (line 82)
* MPFR_DECL_INIT: Initialization Functions.
(line 74)
-* mpfr_digamma: Special Functions. (line 166)
+* mpfr_digamma: Special Functions. (line 172)
* mpfr_dim: Basic Arithmetic Functions.
- (line 166)
+ (line 171)
* mpfr_div: Basic Arithmetic Functions.
- (line 72)
+ (line 74)
* mpfr_divby0_p: Exception Related Functions.
(line 134)
* mpfr_div_2exp: Compatibility with MPF.
(line 49)
* mpfr_div_2si: Basic Arithmetic Functions.
- (line 181)
+ (line 186)
* mpfr_div_2ui: Basic Arithmetic Functions.
- (line 179)
+ (line 184)
* mpfr_div_d: Basic Arithmetic Functions.
- (line 84)
+ (line 86)
* mpfr_div_q: Basic Arithmetic Functions.
- (line 88)
+ (line 90)
* mpfr_div_si: Basic Arithmetic Functions.
- (line 80)
+ (line 82)
* mpfr_div_ui: Basic Arithmetic Functions.
- (line 76)
+ (line 78)
* mpfr_div_z: Basic Arithmetic Functions.
- (line 86)
+ (line 88)
* mpfr_d_div: Basic Arithmetic Functions.
- (line 82)
+ (line 84)
* mpfr_d_sub: Basic Arithmetic Functions.
- (line 35)
-* mpfr_eint: Special Functions. (line 133)
+ (line 36)
+* mpfr_eint: Special Functions. (line 135)
* mpfr_eq: Compatibility with MPF.
(line 28)
* mpfr_equal_p: Comparison Functions.
(line 59)
* mpfr_erangeflag_p: Exception Related Functions.
(line 137)
-* mpfr_erf: Special Functions. (line 177)
-* mpfr_erfc: Special Functions. (line 178)
-* mpfr_exp: Special Functions. (line 23)
-* mpfr_exp10: Special Functions. (line 25)
-* mpfr_exp2: Special Functions. (line 24)
-* mpfr_expm1: Special Functions. (line 129)
-* mpfr_fac_ui: Special Functions. (line 121)
+* mpfr_erf: Special Functions. (line 183)
+* mpfr_erfc: Special Functions. (line 184)
+* mpfr_exp: Special Functions. (line 25)
+* mpfr_exp10: Special Functions. (line 27)
+* mpfr_exp2: Special Functions. (line 26)
+* mpfr_expm1: Special Functions. (line 131)
+* mpfr_fac_ui: Special Functions. (line 123)
* mpfr_fits_intmax_p: Conversion Functions.
(line 150)
* mpfr_fits_sint_p: Conversion Functions.
@@ -3815,20 +3833,20 @@
(line 147)
* mpfr_floor: Integer Related Functions.
(line 8)
-* mpfr_fma: Special Functions. (line 203)
+* mpfr_fma: Special Functions. (line 209)
* mpfr_fmod: Integer Related Functions.
(line 92)
-* mpfr_fms: Special Functions. (line 205)
+* mpfr_fms: Special Functions. (line 211)
* mpfr_fprintf: Formatted Output Functions.
(line 157)
* mpfr_frac: Integer Related Functions.
(line 76)
-* mpfr_free_cache: Special Functions. (line 244)
+* mpfr_free_cache: Special Functions. (line 254)
* mpfr_free_str: Conversion Functions.
(line 137)
* mpfr_frexp: Conversion Functions.
(line 45)
-* mpfr_gamma: Special Functions. (line 148)
+* mpfr_gamma: Special Functions. (line 150)
* mpfr_get_d: Conversion Functions.
(line 7)
* mpfr_get_decimal64: Conversion Functions.
@@ -3887,7 +3905,7 @@
(line 56)
* mpfr_greater_p: Comparison Functions.
(line 55)
-* mpfr_hypot: Special Functions. (line 218)
+* mpfr_hypot: Special Functions. (line 227)
* mpfr_inexflag_p: Exception Related Functions.
(line 136)
* mpfr_inf_p: Comparison Functions.
@@ -3922,21 +3940,21 @@
(line 31)
* mpfr_integer_p: Integer Related Functions.
(line 119)
-* mpfr_j0: Special Functions. (line 182)
-* mpfr_j1: Special Functions. (line 183)
-* mpfr_jn: Special Functions. (line 184)
+* mpfr_j0: Special Functions. (line 188)
+* mpfr_j1: Special Functions. (line 189)
+* mpfr_jn: Special Functions. (line 190)
* mpfr_lessequal_p: Comparison Functions.
(line 58)
* mpfr_lessgreater_p: Comparison Functions.
(line 64)
* mpfr_less_p: Comparison Functions.
(line 57)
-* mpfr_lgamma: Special Functions. (line 157)
-* mpfr_li2: Special Functions. (line 143)
-* mpfr_lngamma: Special Functions. (line 152)
+* mpfr_lgamma: Special Functions. (line 162)
+* mpfr_li2: Special Functions. (line 145)
+* mpfr_lngamma: Special Functions. (line 154)
* mpfr_log: Special Functions. (line 16)
* mpfr_log10: Special Functions. (line 18)
-* mpfr_log1p: Special Functions. (line 125)
+* mpfr_log1p: Special Functions. (line 127)
* mpfr_log2: Special Functions. (line 17)
* mpfr_max: Miscellaneous Functions.
(line 22)
@@ -3947,29 +3965,29 @@
* mpfr_modf: Integer Related Functions.
(line 82)
* mpfr_mul: Basic Arithmetic Functions.
- (line 51)
+ (line 53)
* mpfr_mul_2exp: Compatibility with MPF.
(line 47)
* mpfr_mul_2si: Basic Arithmetic Functions.
- (line 174)
+ (line 179)
* mpfr_mul_2ui: Basic Arithmetic Functions.
- (line 172)
+ (line 177)
* mpfr_mul_d: Basic Arithmetic Functions.
- (line 57)
+ (line 59)
* mpfr_mul_q: Basic Arithmetic Functions.
- (line 61)
+ (line 63)
* mpfr_mul_si: Basic Arithmetic Functions.
- (line 55)
+ (line 57)
* mpfr_mul_ui: Basic Arithmetic Functions.
- (line 53)
+ (line 55)
* mpfr_mul_z: Basic Arithmetic Functions.
- (line 59)
+ (line 61)
* mpfr_nanflag_p: Exception Related Functions.
(line 135)
* mpfr_nan_p: Comparison Functions.
(line 39)
* mpfr_neg: Basic Arithmetic Functions.
- (line 159)
+ (line 164)
* mpfr_nextabove: Miscellaneous Functions.
(line 15)
* mpfr_nextbelow: Miscellaneous Functions.
@@ -3983,13 +4001,13 @@
* mpfr_overflow_p: Exception Related Functions.
(line 133)
* mpfr_pow: Basic Arithmetic Functions.
- (line 116)
+ (line 121)
* mpfr_pow_si: Basic Arithmetic Functions.
- (line 120)
+ (line 125)
* mpfr_pow_ui: Basic Arithmetic Functions.
- (line 118)
+ (line 123)
* mpfr_pow_z: Basic Arithmetic Functions.
- (line 122)
+ (line 127)
* mpfr_prec_round: Rounding Related Functions.
(line 13)
* mpfr_prec_t: Nomenclature and Types.
@@ -3999,7 +4017,7 @@
* mpfr_print_rnd_mode: Rounding Related Functions.
(line 71)
* mpfr_rec_sqrt: Basic Arithmetic Functions.
- (line 103)
+ (line 105)
* mpfr_regular_p: Comparison Functions.
(line 43)
* mpfr_reldiff: Compatibility with MPF.
@@ -4021,11 +4039,11 @@
* mpfr_rnd_t: Nomenclature and Types.
(line 34)
* mpfr_root: Basic Arithmetic Functions.
- (line 109)
+ (line 114)
* mpfr_round: Integer Related Functions.
(line 9)
-* mpfr_sec: Special Functions. (line 45)
-* mpfr_sech: Special Functions. (line 109)
+* mpfr_sec: Special Functions. (line 47)
+* mpfr_sech: Special Functions. (line 111)
* mpfr_set: Assignment Functions.
(line 9)
* mpfr_setsign: Miscellaneous Functions.
@@ -4100,57 +4118,57 @@
(line 49)
* mpfr_signbit: Miscellaneous Functions.
(line 99)
-* mpfr_sin: Special Functions. (line 30)
-* mpfr_sinh: Special Functions. (line 96)
-* mpfr_sinh_cosh: Special Functions. (line 101)
-* mpfr_sin_cos: Special Functions. (line 35)
+* mpfr_sin: Special Functions. (line 32)
+* mpfr_sinh: Special Functions. (line 98)
+* mpfr_sinh_cosh: Special Functions. (line 103)
+* mpfr_sin_cos: Special Functions. (line 37)
* mpfr_si_div: Basic Arithmetic Functions.
- (line 78)
+ (line 80)
* mpfr_si_sub: Basic Arithmetic Functions.
- (line 31)
+ (line 32)
* mpfr_snprintf: Formatted Output Functions.
(line 180)
* mpfr_sprintf: Formatted Output Functions.
(line 170)
* mpfr_sqr: Basic Arithmetic Functions.
- (line 69)
+ (line 71)
* mpfr_sqrt: Basic Arithmetic Functions.
- (line 96)
+ (line 98)
* mpfr_sqrt_ui: Basic Arithmetic Functions.
- (line 97)
+ (line 99)
* mpfr_strtofr: Assignment Functions.
(line 80)
* mpfr_sub: Basic Arithmetic Functions.
- (line 25)
+ (line 26)
* mpfr_subnormalize: Exception Related Functions.
(line 60)
* mpfr_sub_d: Basic Arithmetic Functions.
- (line 37)
+ (line 38)
* mpfr_sub_q: Basic Arithmetic Functions.
- (line 43)
+ (line 44)
* mpfr_sub_si: Basic Arithmetic Functions.
- (line 33)
+ (line 34)
* mpfr_sub_ui: Basic Arithmetic Functions.
- (line 29)
+ (line 30)
* mpfr_sub_z: Basic Arithmetic Functions.
- (line 41)
-* mpfr_sum: Special Functions. (line 252)
+ (line 42)
+* mpfr_sum: Special Functions. (line 262)
* mpfr_swap: Assignment Functions.
(line 150)
* mpfr_t: Nomenclature and Types.
(line 6)
-* mpfr_tan: Special Functions. (line 31)
-* mpfr_tanh: Special Functions. (line 97)
+* mpfr_tan: Special Functions. (line 33)
+* mpfr_tanh: Special Functions. (line 99)
* mpfr_trunc: Integer Related Functions.
(line 10)
* mpfr_ui_div: Basic Arithmetic Functions.
- (line 74)
+ (line 76)
* mpfr_ui_pow: Basic Arithmetic Functions.
- (line 126)
+ (line 131)
* mpfr_ui_pow_ui: Basic Arithmetic Functions.
- (line 124)
+ (line 129)
* mpfr_ui_sub: Basic Arithmetic Functions.
- (line 27)
+ (line 28)
* mpfr_underflow_p: Exception Related Functions.
(line 132)
* mpfr_unordered_p: Comparison Functions.
@@ -4181,61 +4199,61 @@
(line 182)
* mpfr_vsprintf: Formatted Output Functions.
(line 171)
-* mpfr_y0: Special Functions. (line 193)
-* mpfr_y1: Special Functions. (line 194)
-* mpfr_yn: Special Functions. (line 195)
+* mpfr_y0: Special Functions. (line 199)
+* mpfr_y1: Special Functions. (line 200)
+* mpfr_yn: Special Functions. (line 201)
* mpfr_zero_p: Comparison Functions.
(line 42)
-* mpfr_zeta: Special Functions. (line 171)
-* mpfr_zeta_ui: Special Functions. (line 172)
+* mpfr_zeta: Special Functions. (line 177)
+* mpfr_zeta_ui: Special Functions. (line 178)
* mpfr_z_sub: Basic Arithmetic Functions.
- (line 39)
+ (line 40)

Tag Table:
Node: Top775
Node: Copying2007
-Node: Introduction to MPFR3766
-Node: Installing MPFR5880
-Node: Reporting Bugs11323
-Node: MPFR Basics13353
-Node: Headers and Libraries13669
-Node: Nomenclature and Types16828
-Node: MPFR Variable Conventions18874
-Node: Rounding Modes20418
-Ref: ternary value21544
-Node: Floating-Point Values on Special Numbers23526
-Node: Exceptions26572
-Node: Memory Handling29749
-Node: MPFR Interface30894
-Node: Initialization Functions33008
-Node: Assignment Functions40318
-Node: Combined Initialization and Assignment Functions49673
-Node: Conversion Functions50974
-Node: Basic Arithmetic Functions60035
-Node: Comparison Functions69200
-Node: Special Functions72687
-Node: Input and Output Functions86672
-Node: Formatted Output Functions88644
-Node: Integer Related Functions98431
-Node: Rounding Related Functions105051
-Node: Miscellaneous Functions108888
-Node: Exception Related Functions117568
-Node: Compatibility with MPF124386
-Node: Custom Interface127127
-Node: Internals131526
-Node: API Compatibility133066
-Node: Type and Macro Changes134995
-Node: Added Functions137844
-Node: Changed Functions141132
-Node: Removed Functions145545
-Node: Other Changes145973
-Node: Contributors147576
-Node: References150219
-Node: GNU Free Documentation License151973
-Node: Concept Index174562
-Node: Function and Type Index180659
+Node: Introduction to MPFR3770
+Node: Installing MPFR5884
+Node: Reporting Bugs11327
+Node: MPFR Basics13357
+Node: Headers and Libraries13673
+Node: Nomenclature and Types16832
+Node: MPFR Variable Conventions18894
+Node: Rounding Modes20438
+Ref: ternary value21568
+Node: Floating-Point Values on Special Numbers23554
+Node: Exceptions26813
+Node: Memory Handling29990
+Node: MPFR Interface31135
+Node: Initialization Functions33249
+Node: Assignment Functions40559
+Node: Combined Initialization and Assignment Functions49914
+Node: Conversion Functions51215
+Node: Basic Arithmetic Functions60276
+Node: Comparison Functions69777
+Node: Special Functions73264
+Node: Input and Output Functions87862
+Node: Formatted Output Functions89834
+Node: Integer Related Functions99621
+Node: Rounding Related Functions106241
+Node: Miscellaneous Functions110078
+Node: Exception Related Functions118758
+Node: Compatibility with MPF125576
+Node: Custom Interface128317
+Node: Internals132716
+Node: API Compatibility134260
+Node: Type and Macro Changes136189
+Node: Added Functions139038
+Node: Changed Functions142326
+Node: Removed Functions146739
+Node: Other Changes147167
+Node: Contributors148770
+Node: References151413
+Node: GNU Free Documentation License153167
+Node: Concept Index175760
+Node: Function and Type Index181857

End Tag Table
diff -Naurd mpfr-3.1.3-a/src/lngamma.c mpfr-3.1.3-b/src/lngamma.c
--- mpfr-3.1.3-a/src/lngamma.c 2015-06-19 19:55:10.000000000 +0000
+++ mpfr-3.1.3-b/src/lngamma.c 2015-07-02 10:49:24.018113593 +0000
@@ -603,16 +603,17 @@
mpfr_get_prec (y), mpfr_log_prec, y, inex));
/* special cases */
- if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
+ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x) ||
+ (MPFR_IS_NEG (x) && mpfr_integer_p (x))))
{
- if (MPFR_IS_NAN (x) || MPFR_IS_NEG (x))
+ if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
- else /* lngamma(+Inf) = lngamma(+0) = +Inf */
+ else /* lngamma(+/-Inf) = lngamma(nonpositive integer) = +Inf */
{
- if (MPFR_IS_ZERO (x))
+ if (!MPFR_IS_INF (x))
mpfr_set_divby0 ();
MPFR_SET_INF (y);
MPFR_SET_POS (y);
@@ -620,8 +621,8 @@
}
}
- /* if x < 0 and -2k-1 <= x <= -2k, then lngamma(x) = NaN */
- if (MPFR_IS_NEG (x) && (unit_bit (x) == 0 || mpfr_integer_p (x)))
+ /* if -2k-1 < x < -2k <= 0, then lngamma(x) = NaN */
+ if (MPFR_IS_NEG (x) && unit_bit (x) == 0)
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
diff -Naurd mpfr-3.1.3-a/src/mpfr.h mpfr-3.1.3-b/src/mpfr.h
--- mpfr-3.1.3-a/src/mpfr.h 2015-06-19 19:55:10.000000000 +0000
+++ mpfr-3.1.3-b/src/mpfr.h 2015-07-02 10:49:24.038113803 +0000
@@ -27,7 +27,7 @@
#define MPFR_VERSION_MAJOR 3
#define MPFR_VERSION_MINOR 1
#define MPFR_VERSION_PATCHLEVEL 3
-#define MPFR_VERSION_STRING "3.1.3"
+#define MPFR_VERSION_STRING "3.1.3-p1"
/* Macros dealing with MPFR VERSION */
#define MPFR_VERSION_NUM(a,b,c) (((a) << 16L) | ((b) << 8) | (c))
diff -Naurd mpfr-3.1.3-a/src/version.c mpfr-3.1.3-b/src/version.c
--- mpfr-3.1.3-a/src/version.c 2015-06-19 19:55:10.000000000 +0000
+++ mpfr-3.1.3-b/src/version.c 2015-07-02 10:49:24.042113845 +0000
@@ -25,5 +25,5 @@
const char *
mpfr_get_version (void)
{
- return "3.1.3";
+ return "3.1.3-p1";
}
diff -Naurd mpfr-3.1.3-a/tests/tlngamma.c mpfr-3.1.3-b/tests/tlngamma.c
--- mpfr-3.1.3-a/tests/tlngamma.c 2015-06-19 19:55:10.000000000 +0000
+++ mpfr-3.1.3-b/tests/tlngamma.c 2015-07-02 10:49:24.018113593 +0000
@@ -33,7 +33,7 @@
special (void)
{
mpfr_t x, y;
- int inex;
+ int i, inex;
mpfr_init (x);
mpfr_init (y);
@@ -46,25 +46,29 @@
exit (1);
}
- mpfr_set_inf (x, -1);
+ mpfr_set_inf (x, 1);
+ mpfr_clear_flags ();
mpfr_lngamma (y, x, MPFR_RNDN);
- if (!mpfr_nan_p (y))
+ if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0 || __gmpfr_flags != 0)
{
- printf ("Error for lngamma(-Inf)\n");
+ printf ("Error for lngamma(+Inf)\n");
exit (1);
}
- mpfr_set_inf (x, 1);
+ mpfr_set_inf (x, -1);
+ mpfr_clear_flags ();
mpfr_lngamma (y, x, MPFR_RNDN);
- if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0)
+ if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0 || __gmpfr_flags != 0)
{
- printf ("Error for lngamma(+Inf)\n");
+ printf ("Error for lngamma(-Inf)\n");
exit (1);
}
mpfr_set_ui (x, 0, MPFR_RNDN);
+ mpfr_clear_flags ();
mpfr_lngamma (y, x, MPFR_RNDN);
- if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0)
+ if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0 ||
+ __gmpfr_flags != MPFR_FLAGS_DIVBY0)
{
printf ("Error for lngamma(+0)\n");
exit (1);
@@ -72,32 +76,58 @@
mpfr_set_ui (x, 0, MPFR_RNDN);
mpfr_neg (x, x, MPFR_RNDN);
+ mpfr_clear_flags ();
mpfr_lngamma (y, x, MPFR_RNDN);
- if (!mpfr_nan_p (y))
+ if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0 ||
+ __gmpfr_flags != MPFR_FLAGS_DIVBY0)
{
printf ("Error for lngamma(-0)\n");
exit (1);
}
mpfr_set_ui (x, 1, MPFR_RNDN);
+ mpfr_clear_flags ();
mpfr_lngamma (y, x, MPFR_RNDN);
- if (MPFR_IS_NAN (y) || mpfr_cmp_ui (y, 0) || MPFR_IS_NEG (y))
+ if (mpfr_cmp_ui0 (y, 0) || MPFR_IS_NEG (y))
{
printf ("Error for lngamma(1)\n");
exit (1);
}
- mpfr_set_si (x, -1, MPFR_RNDN);
- mpfr_lngamma (y, x, MPFR_RNDN);
- if (!mpfr_nan_p (y))
+ for (i = 1; i <= 5; i++)
{
- printf ("Error for lngamma(-1)\n");
- exit (1);
+ int c;
+
+ mpfr_set_si (x, -i, MPFR_RNDN);
+ mpfr_clear_flags ();
+ mpfr_lngamma (y, x, MPFR_RNDN);
+ if (!mpfr_inf_p (y) || mpfr_sgn (y) < 0 ||
+ __gmpfr_flags != MPFR_FLAGS_DIVBY0)
+ {
+ printf ("Error for lngamma(-%d)\n", i);
+ exit (1);
+ }
+ if (i & 1)
+ {
+ mpfr_nextabove (x);
+ c = '+';
+ }
+ else
+ {
+ mpfr_nextbelow (x);
+ c = '-';
+ }
+ mpfr_lngamma (y, x, MPFR_RNDN);
+ if (!mpfr_nan_p (y))
+ {
+ printf ("Error for lngamma(-%d%cepsilon)\n", i, c);
+ exit (1);
+ }
}
mpfr_set_ui (x, 2, MPFR_RNDN);
mpfr_lngamma (y, x, MPFR_RNDN);
- if (MPFR_IS_NAN (y) || mpfr_cmp_ui (y, 0) || MPFR_IS_NEG (y))
+ if (mpfr_cmp_ui0 (y, 0) || MPFR_IS_NEG (y))
{
printf ("Error for lngamma(2)\n");
exit (1);
@@ -127,7 +157,7 @@
mpfr_set_str (x, CHECK_X2, 10, MPFR_RNDN);
mpfr_lngamma (y, x, MPFR_RNDN);
mpfr_set_str (x, CHECK_Y2, 10, MPFR_RNDN);
- if (MPFR_IS_NAN (y) || mpfr_cmp (y, x))
+ if (mpfr_cmp0 (y, x))
{
printf ("mpfr_lngamma("CHECK_X2") is wrong:\n"
"expected ");
@@ -143,7 +173,7 @@
mpfr_lngamma (y, x, MPFR_RNDU);
mpfr_set_prec (x, 175);
mpfr_set_str_binary (x, "0.1010001100011101101011001101110010100001000001000001110011000001101100001111001001000101011011100100010101011110100111110101010100010011010010000101010111001100011000101111E7");
- if (MPFR_IS_NAN (y) || mpfr_cmp (x, y))
+ if (mpfr_cmp0 (x, y))
{
printf ("Error in mpfr_lngamma (1)\n");
exit (1);
@@ -155,7 +185,7 @@
mpfr_lngamma (x, y, MPFR_RNDZ);
mpfr_set_prec (y, 21);
mpfr_set_str_binary (y, "0.111000101000001100101E9");
- if (MPFR_IS_NAN (x) || mpfr_cmp (x, y))
+ if (mpfr_cmp0 (x, y))
{
printf ("Error in mpfr_lngamma (120)\n");
printf ("Expected "); mpfr_print_binary (y); puts ("");
@@ -169,7 +199,7 @@
inex = mpfr_lngamma (y, x, MPFR_RNDN);
mpfr_set_prec (x, 206);
mpfr_set_str_binary (x, "0.10000111011000000011100010101001100110001110000111100011000100100110110010001011011110101001111011110110000001010100111011010000000011100110110101100111000111010011110010000100010111101010001101000110101001E13");
- if (MPFR_IS_NAN (y) || mpfr_cmp (x, y))
+ if (mpfr_cmp0 (x, y))
{
printf ("Error in mpfr_lngamma (768)\n");
exit (1);
@@ -185,7 +215,7 @@
mpfr_set_str_binary (x, "0.1100E-66");
mpfr_lngamma (y, x, MPFR_RNDN);
mpfr_set_str_binary (x, "0.1100E6");
- if (MPFR_IS_NAN (y) || mpfr_cmp (x, y))
+ if (mpfr_cmp0 (x, y))
{
printf ("Error for lngamma(0.1100E-66)\n");
exit (1);
@@ -199,7 +229,7 @@
mpfr_lngamma (y, x, MPFR_RNDN);
mpfr_set_prec (x, 32);
mpfr_set_str_binary (x, "-0.10001000111011111011000010100010E207");
- if (MPFR_IS_NAN (y) || mpfr_cmp (x, y))
+ if (mpfr_cmp0 (x, y))
{
printf ("Error for lngamma(-2^199+0.5)\n");
printf ("Got ");