crosstool-ng/packages/mpfr/3.1.3/220-root.patch

622 lines
19 KiB
Diff
Raw Normal View History

diff -Naurd mpfr-3.1.3-a/PATCHES mpfr-3.1.3-b/PATCHES
--- mpfr-3.1.3-a/PATCHES 2016-02-15 15:20:51.242696408 +0000
+++ mpfr-3.1.3-b/PATCHES 2016-02-15 15:20:51.306696441 +0000
@@ -0,0 +1 @@
+root
diff -Naurd mpfr-3.1.3-a/VERSION mpfr-3.1.3-b/VERSION
--- mpfr-3.1.3-a/VERSION 2016-02-15 15:20:16.922677881 +0000
+++ mpfr-3.1.3-b/VERSION 2016-02-15 15:20:51.306696441 +0000
@@ -1 +1 @@
-3.1.3-p11
+3.1.3-p12
diff -Naurd mpfr-3.1.3-a/src/mpfr.h mpfr-3.1.3-b/src/mpfr.h
--- mpfr-3.1.3-a/src/mpfr.h 2016-02-15 15:20:16.922677881 +0000
+++ mpfr-3.1.3-b/src/mpfr.h 2016-02-15 15:20:51.302696439 +0000
@@ -27,7 +27,7 @@
#define MPFR_VERSION_MAJOR 3
#define MPFR_VERSION_MINOR 1
#define MPFR_VERSION_PATCHLEVEL 3
-#define MPFR_VERSION_STRING "3.1.3-p11"
+#define MPFR_VERSION_STRING "3.1.3-p12"
/* Macros dealing with MPFR VERSION */
#define MPFR_VERSION_NUM(a,b,c) (((a) << 16L) | ((b) << 8) | (c))
diff -Naurd mpfr-3.1.3-a/src/root.c mpfr-3.1.3-b/src/root.c
--- mpfr-3.1.3-a/src/root.c 2015-06-19 19:55:10.000000000 +0000
+++ mpfr-3.1.3-b/src/root.c 2016-02-15 15:20:51.282696429 +0000
@@ -23,13 +23,15 @@
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
- /* The computation of y = x^(1/k) is done as follows:
+ /* The computation of y = x^(1/k) is done as follows, except for large
+ values of k, for which this would be inefficient or yield internal
+ integer overflows:
Let x = sign * m * 2^(k*e) where m is an integer
with 2^(k*(n-1)) <= m < 2^(k*n) where n = PREC(y)
- and m = s^k + r where 0 <= r and m < (s+1)^k
+ and m = s^k + t where 0 <= t and m < (s+1)^k
we want that s has n bits i.e. s >= 2^(n-1), or m >= 2^(k*(n-1))
i.e. m must have at least k*(n-1)+1 bits
@@ -38,11 +40,15 @@
x^(1/k) = s * 2^e or (s+1) * 2^e according to the rounding mode.
*/
+static int
+mpfr_root_aux (mpfr_ptr y, mpfr_srcptr x, unsigned long k,
+ mpfr_rnd_t rnd_mode);
+
int
mpfr_root (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mpfr_rnd_t rnd_mode)
{
mpz_t m;
- mpfr_exp_t e, r, sh;
+ mpfr_exp_t e, r, sh, f;
mpfr_prec_t n, size_m, tmp;
int inexact, negative;
MPFR_SAVE_EXPO_DECL (expo);
@@ -55,50 +61,27 @@
if (MPFR_UNLIKELY (k <= 1))
{
- if (k < 1) /* k==0 => y=x^(1/0)=x^(+Inf) */
-#if 0
- /* For 0 <= x < 1 => +0.
- For x = 1 => 1.
- For x > 1, => +Inf.
- For x < 0 => NaN.
- */
+ if (k == 0)
{
- if (MPFR_IS_NEG (x) && !MPFR_IS_ZERO (x))
- {
- MPFR_SET_NAN (y);
- MPFR_RET_NAN;
- }
- inexact = mpfr_cmp (x, __gmpfr_one);
- if (inexact == 0)
- return mpfr_set_ui (y, 1, rnd_mode); /* 1 may be Out of Range */
- else if (inexact < 0)
- return mpfr_set_ui (y, 0, rnd_mode); /* 0+ */
- else
- {
- mpfr_set_inf (y, 1);
- return 0;
- }
+ MPFR_SET_NAN (y);
+ MPFR_RET_NAN;
}
-#endif
- {
- MPFR_SET_NAN (y);
- MPFR_RET_NAN;
- }
- else /* y =x^(1/1)=x */
+ else /* y = x^(1/1) = x */
return mpfr_set (y, x, rnd_mode);
}
/* Singular values */
- else if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
+ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y); /* NaN^(1/k) = NaN */
MPFR_RET_NAN;
}
- else if (MPFR_IS_INF (x)) /* +Inf^(1/k) = +Inf
- -Inf^(1/k) = -Inf if k odd
- -Inf^(1/k) = NaN if k even */
+
+ if (MPFR_IS_INF (x)) /* +Inf^(1/k) = +Inf
+ -Inf^(1/k) = -Inf if k odd
+ -Inf^(1/k) = NaN if k even */
{
if (MPFR_IS_NEG(x) && (k % 2 == 0))
{
@@ -106,27 +89,31 @@
MPFR_RET_NAN;
}
MPFR_SET_INF (y);
- MPFR_SET_SAME_SIGN (y, x);
- MPFR_RET (0);
}
else /* x is necessarily 0: (+0)^(1/k) = +0
(-0)^(1/k) = -0 */
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
MPFR_SET_ZERO (y);
- MPFR_SET_SAME_SIGN (y, x);
- MPFR_RET (0);
}
+ MPFR_SET_SAME_SIGN (y, x);
+ MPFR_RET (0);
}
/* Returns NAN for x < 0 and k even */
- else if (MPFR_IS_NEG (x) && (k % 2 == 0))
+ if (MPFR_UNLIKELY (MPFR_IS_NEG (x) && (k % 2 == 0)))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
/* General case */
+
+ /* For large k, use exp(log(x)/k). The threshold of 100 seems to be quite
+ good when the precision goes to infinity. */
+ if (k > 100)
+ return mpfr_root_aux (y, x, k, rnd_mode);
+
MPFR_SAVE_EXPO_MARK (expo);
mpz_init (m);
@@ -135,31 +122,24 @@
mpz_neg (m, m);
r = e % (mpfr_exp_t) k;
if (r < 0)
- r += k; /* now r = e (mod k) with 0 <= e < r */
+ r += k; /* now r = e (mod k) with 0 <= r < k */
+ MPFR_ASSERTD (0 <= r && r < k);
/* x = (m*2^r) * 2^(e-r) where e-r is a multiple of k */
MPFR_MPZ_SIZEINBASE2 (size_m, m);
/* for rounding to nearest, we want the round bit to be in the root */
n = MPFR_PREC (y) + (rnd_mode == MPFR_RNDN);
- /* we now multiply m by 2^(r+k*sh) so that root(m,k) will give
- exactly n bits: we want k*(n-1)+1 <= size_m + k*sh + r <= k*n
- i.e. sh = floor ((kn-size_m-r)/k) */
- if ((mpfr_exp_t) size_m + r > k * (mpfr_exp_t) n)
- sh = 0; /* we already have too many bits */
+ /* we now multiply m by 2^sh so that root(m,k) will give
+ exactly n bits: we want k*(n-1)+1 <= size_m + sh <= k*n
+ i.e. sh = k*f + r with f = max(floor((k*n-size_m-r)/k),0) */
+ if ((mpfr_exp_t) size_m + r >= k * (mpfr_exp_t) n)
+ f = 0; /* we already have too many bits */
else
- sh = (k * (mpfr_exp_t) n - (mpfr_exp_t) size_m - r) / k;
- sh = k * sh + r;
- if (sh >= 0)
- {
- mpz_mul_2exp (m, m, sh);
- e = e - sh;
- }
- else if (r > 0)
- {
- mpz_mul_2exp (m, m, r);
- e = e - r;
- }
+ f = (k * (mpfr_exp_t) n - (mpfr_exp_t) size_m - r) / k;
+ sh = k * f + r;
+ mpz_mul_2exp (m, m, sh);
+ e = e - sh;
/* invariant: x = m*2^e, with e divisible by k */
@@ -203,3 +183,97 @@
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
+
+/* Compute y <- x^(1/k) using exp(log(x)/k).
+ Assume all special cases have been eliminated before.
+ In the extended exponent range, overflows/underflows are not possible.
+ Assume x > 0, or x < 0 and k odd.
+*/
+static int
+mpfr_root_aux (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mpfr_rnd_t rnd_mode)
+{
+ int inexact, exact_root = 0;
+ mpfr_prec_t w; /* working precision */
+ mpfr_t absx, t;
+ MPFR_GROUP_DECL(group);
+ MPFR_TMP_DECL(marker);
+ MPFR_ZIV_DECL(loop);
+ MPFR_SAVE_EXPO_DECL (expo);
+
+ MPFR_TMP_INIT_ABS (absx, x);
+
+ MPFR_TMP_MARK(marker);
+ w = MPFR_PREC(y) + 10;
+ /* Take some guard bits to prepare for the 'expt' lost bits below.
+ If |x| < 2^k, then log|x| < k, thus taking log2(k) bits should be fine. */
+ if (MPFR_GET_EXP(x) > 0)
+ w += MPFR_INT_CEIL_LOG2 (MPFR_GET_EXP(x));
+ MPFR_GROUP_INIT_1(group, w, t);
+ MPFR_SAVE_EXPO_MARK (expo);
+ MPFR_ZIV_INIT (loop, w);
+ for (;;)
+ {
+ mpfr_exp_t expt;
+ unsigned int err;
+
+ mpfr_log (t, absx, MPFR_RNDN);
+ /* t = log|x| * (1 + theta) with |theta| <= 2^(-w) */
+ mpfr_div_ui (t, t, k, MPFR_RNDN);
+ expt = MPFR_GET_EXP (t);
+ /* t = log|x|/k * (1 + theta) + eps with |theta| <= 2^(-w)
+ and |eps| <= 1/2 ulp(t), thus the total error is bounded
+ by 1.5 * 2^(expt - w) */
+ mpfr_exp (t, t, MPFR_RNDN);
+ /* t = |x|^(1/k) * exp(tau) * (1 + theta1) with
+ |tau| <= 1.5 * 2^(expt - w) and |theta1| <= 2^(-w).
+ For |tau| <= 0.5 we have |exp(tau)-1| < 4/3*tau, thus
+ for w >= expt + 2 we have:
+ t = |x|^(1/k) * (1 + 2^(expt+2)*theta2) * (1 + theta1) with
+ |theta1|, |theta2| <= 2^(-w).
+ If expt+2 > 0, as long as w >= 1, we have:
+ t = |x|^(1/k) * (1 + 2^(expt+3)*theta3) with |theta3| < 2^(-w).
+ For expt+2 = 0, we have:
+ t = |x|^(1/k) * (1 + 2^2*theta3) with |theta3| < 2^(-w).
+ Finally for expt+2 < 0 we have:
+ t = |x|^(1/k) * (1 + 2*theta3) with |theta3| < 2^(-w).
+ */
+ err = (expt + 2 > 0) ? expt + 3
+ : (expt + 2 == 0) ? 2 : 1;
+ /* now t = |x|^(1/k) * (1 + 2^(err-w)) thus the error is at most
+ 2^(EXP(t) - w + err) */
+ if (MPFR_LIKELY (MPFR_CAN_ROUND(t, w - err, MPFR_PREC(y), rnd_mode)))
+ break;
+
+ /* If we fail to round correctly, check for an exact result or a
+ midpoint result with MPFR_RNDN (regarded as hard-to-round in
+ all precisions in order to determine the ternary value). */
+ {
+ mpfr_t z, zk;
+
+ mpfr_init2 (z, MPFR_PREC(y) + (rnd_mode == MPFR_RNDN));
+ mpfr_init2 (zk, MPFR_PREC(x));
+ mpfr_set (z, t, MPFR_RNDN);
+ inexact = mpfr_pow_ui (zk, z, k, MPFR_RNDN);
+ exact_root = !inexact && mpfr_equal_p (zk, absx);
+ if (exact_root) /* z is the exact root, thus round z directly */
+ inexact = mpfr_set4 (y, z, rnd_mode, MPFR_SIGN (x));
+ mpfr_clear (zk);
+ mpfr_clear (z);
+ if (exact_root)
+ break;
+ }
+
+ MPFR_ZIV_NEXT (loop, w);
+ MPFR_GROUP_REPREC_1(group, w, t);
+ }
+ MPFR_ZIV_FREE (loop);
+
+ if (!exact_root)
+ inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (x));
+
+ MPFR_GROUP_CLEAR(group);
+ MPFR_TMP_FREE(marker);
+ MPFR_SAVE_EXPO_FREE (expo);
+
+ return mpfr_check_range (y, inexact, rnd_mode);
+}
diff -Naurd mpfr-3.1.3-a/src/version.c mpfr-3.1.3-b/src/version.c
--- mpfr-3.1.3-a/src/version.c 2016-02-15 15:20:16.922677881 +0000
+++ mpfr-3.1.3-b/src/version.c 2016-02-15 15:20:51.306696441 +0000
@@ -25,5 +25,5 @@
const char *
mpfr_get_version (void)
{
- return "3.1.3-p11";
+ return "3.1.3-p12";
}
diff -Naurd mpfr-3.1.3-a/tests/troot.c mpfr-3.1.3-b/tests/troot.c
--- mpfr-3.1.3-a/tests/troot.c 2015-06-19 19:55:10.000000000 +0000
+++ mpfr-3.1.3-b/tests/troot.c 2016-02-15 15:20:51.282696429 +0000
@@ -25,6 +25,19 @@
#include "mpfr-test.h"
+#define DEFN(N) \
+ static int root##N (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd) \
+ { return mpfr_root (y, x, N, rnd); } \
+ static int pow##N (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd) \
+ { return mpfr_pow_ui (y, x, N, rnd); }
+
+DEFN(2)
+DEFN(3)
+DEFN(4)
+DEFN(5)
+DEFN(17)
+DEFN(120)
+
static void
special (void)
{
@@ -52,7 +65,7 @@
exit (1);
}
- /* root(-Inf, 17) = -Inf */
+ /* root(-Inf, 17) = -Inf */
mpfr_set_inf (x, -1);
mpfr_root (y, x, 17, MPFR_RNDN);
if (!mpfr_inf_p (y) || mpfr_sgn (y) > 0)
@@ -69,7 +82,7 @@
exit (1);
}
- /* root(+/-0) = +/-0 */
+ /* root(+/-0, k) = +/-0 for k > 0 */
mpfr_set_ui (x, 0, MPFR_RNDN);
mpfr_root (y, x, 17, MPFR_RNDN);
if (mpfr_cmp_ui (y, 0) || mpfr_sgn (y) < 0)
@@ -190,64 +203,39 @@
i = mpfr_root (y, x, 1, MPFR_RNDN);
if (mpfr_cmp_ui (x, 17) || i != 0)
{
- printf ("Error in root (17^(1/1))\n");
+ printf ("Error in root for 17^(1/1)\n");
exit (1);
}
-#if 0
- /* Check for k == 0:
- For 0 <= x < 1 => +0.
- For x = 1 => 1.
- For x > 1, => +Inf.
- For x < 0 => NaN. */
- i = mpfr_root (y, x, 0, MPFR_RNDN);
- if (!MPFR_IS_INF (y) || !MPFR_IS_POS (y) || i != 0)
- {
- printf ("Error in root 17^(1/0)\n");
- exit (1);
- }
- mpfr_set_ui (x, 1, MPFR_RNDN);
- i = mpfr_root (y, x, 0, MPFR_RNDN);
- if (mpfr_cmp_ui (y, 1) || i != 0)
- {
- printf ("Error in root 1^(1/0)\n");
- exit (1);
- }
mpfr_set_ui (x, 0, MPFR_RNDN);
i = mpfr_root (y, x, 0, MPFR_RNDN);
- if (!MPFR_IS_ZERO (y) || !MPFR_IS_POS (y) || i != 0)
- {
- printf ("Error in root 0+^(1/0)\n");
- exit (1);
- }
- MPFR_CHANGE_SIGN (x);
- i = mpfr_root (y, x, 0, MPFR_RNDN);
- if (!MPFR_IS_ZERO (y) || !MPFR_IS_POS (y) || i != 0)
+ if (!MPFR_IS_NAN (y) || i != 0)
{
- printf ("Error in root 0-^(1/0)\n");
+ printf ("Error in root for (+0)^(1/0)\n");
exit (1);
}
- mpfr_set_ui_2exp (x, 17, -5, MPFR_RNDD);
+ mpfr_neg (x, x, MPFR_RNDN);
i = mpfr_root (y, x, 0, MPFR_RNDN);
- if (!MPFR_IS_ZERO (y) || !MPFR_IS_POS (y) || i != 0)
+ if (!MPFR_IS_NAN (y) || i != 0)
{
- printf ("Error in root (17/2^5)^(1/0)\n");
+ printf ("Error in root for (-0)^(1/0)\n");
exit (1);
}
-#endif
- mpfr_set_ui (x, 0, MPFR_RNDN);
+
+ mpfr_set_ui (x, 1, MPFR_RNDN);
i = mpfr_root (y, x, 0, MPFR_RNDN);
if (!MPFR_IS_NAN (y) || i != 0)
{
- printf ("Error in root 0+^(1/0)\n");
+ printf ("Error in root for 1^(1/0)\n");
exit (1);
}
+
/* Check for k==2 */
mpfr_set_si (x, -17, MPFR_RNDD);
i = mpfr_root (y, x, 2, MPFR_RNDN);
if (!MPFR_IS_NAN (y) || i != 0)
{
- printf ("Error in root (-17)^(1/2)\n");
+ printf ("Error in root for (-17)^(1/2)\n");
exit (1);
}
@@ -255,11 +243,168 @@
mpfr_clear (y);
}
+/* https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=812779
+ * https://bugzilla.gnome.org/show_bug.cgi?id=756960
+ * is a GNOME Calculator bug (mpfr_root applied on a negative integer,
+ * which is converted to an unsigned integer), but the strange result
+ * is also due to a bug in MPFR.
+ */
+static void
+bigint (void)
+{
+ mpfr_t x, y;
+
+ mpfr_inits2 (64, x, y, (mpfr_ptr) 0);
+
+ mpfr_set_ui (x, 10, MPFR_RNDN);
+ if (sizeof (unsigned long) * CHAR_BIT == 64)
+ {
+ mpfr_root (x, x, ULONG_MAX, MPFR_RNDN);
+ mpfr_set_ui_2exp (y, 1, -63, MPFR_RNDN);
+ mpfr_add_ui (y, y, 1, MPFR_RNDN);
+ if (! mpfr_equal_p (x, y))
+ {
+ printf ("Error in bigint for ULONG_MAX\n");
+ printf ("Expected ");
+ mpfr_dump (y);
+ printf ("Got ");
+ mpfr_dump (x);
+ exit (1);
+ }
+ }
+
+ mpfr_set_ui (x, 10, MPFR_RNDN);
+ mpfr_root (x, x, 1234567890, MPFR_RNDN);
+ mpfr_set_str_binary (y,
+ "1.00000000000000000000000000001000000000101011000101000110010001");
+ if (! mpfr_equal_p (x, y))
+ {
+ printf ("Error in bigint for 1234567890\n");
+ printf ("Expected ");
+ mpfr_dump (y);
+ printf ("Got ");
+ mpfr_dump (x);
+ exit (1);
+ }
+
+ mpfr_clears (x, y, (mpfr_ptr) 0);
+}
+
#define TEST_FUNCTION mpfr_root
#define INTEGER_TYPE unsigned long
-#define INT_RAND_FUNCTION() (INTEGER_TYPE) (randlimb () % 3 +2)
+#define INT_RAND_FUNCTION() \
+ (INTEGER_TYPE) (randlimb () & 1 ? randlimb () : randlimb () % 3 + 2)
#include "tgeneric_ui.c"
+static void
+exact_powers (unsigned long bmax, unsigned long kmax)
+{
+ long b, k;
+ mpz_t z;
+ mpfr_t x, y;
+ int inex, neg;
+
+ mpz_init (z);
+ for (b = 2; b <= bmax; b++)
+ for (k = 1; k <= kmax; k++)
+ {
+ mpz_ui_pow_ui (z, b, k);
+ mpfr_init2 (x, mpz_sizeinbase (z, 2));
+ mpfr_set_ui (x, b, MPFR_RNDN);
+ mpfr_pow_ui (x, x, k, MPFR_RNDN);
+ mpz_set_ui (z, b);
+ mpfr_init2 (y, mpz_sizeinbase (z, 2));
+ for (neg = 0; neg <= 1; neg++)
+ {
+ inex = mpfr_root (y, x, k, MPFR_RNDN);
+ if (inex != 0)
+ {
+ printf ("Error in exact_powers, b=%ld, k=%ld\n", b, k);
+ printf ("Expected inex=0, got %d\n", inex);
+ exit (1);
+ }
+ if (neg && (k & 1) == 0)
+ {
+ if (!MPFR_IS_NAN (y))
+ {
+ printf ("Error in exact_powers, b=%ld, k=%ld\n", b, k);
+ printf ("Expected y=NaN\n");
+ printf ("Got ");
+ mpfr_out_str (stdout, 10, 0, y, MPFR_RNDN);
+ printf ("\n");
+ exit (1);
+ }
+ }
+ else if (MPFR_IS_NAN (y) || mpfr_cmp_si (y, b) != 0)
+ {
+ printf ("Error in exact_powers, b=%ld, k=%ld\n", b, k);
+ printf ("Expected y=%ld\n", b);
+ printf ("Got ");
+ mpfr_out_str (stdout, 10, 0, y, MPFR_RNDN);
+ printf ("\n");
+ exit (1);
+ }
+ mpfr_neg (x, x, MPFR_RNDN);
+ b = -b;
+ }
+ mpfr_clear (x);
+ mpfr_clear (y);
+ }
+ mpz_clear (z);
+}
+
+/* Compare root(x,2^h) with pow(x,2^(-h)). */
+static void
+cmp_pow (void)
+{
+ mpfr_t x, y1, y2;
+ int h;
+
+ mpfr_inits2 (128, x, y1, y2, (mpfr_ptr) 0);
+
+ for (h = 1; h < sizeof (unsigned long) * CHAR_BIT; h++)
+ {
+ unsigned long k = (unsigned long) 1 << h;
+ int i;
+
+ for (i = 0; i < 10; i++)
+ {
+ mpfr_rnd_t rnd;
+ unsigned int flags1, flags2;
+ int inex1, inex2;
+
+ tests_default_random (x, 0, __gmpfr_emin, __gmpfr_emax, 1);
+ rnd = RND_RAND ();
+ mpfr_set_ui_2exp (y1, 1, -h, MPFR_RNDN);
+ mpfr_clear_flags ();
+ inex1 = mpfr_pow (y1, x, y1, rnd);
+ flags1 = __gmpfr_flags;
+ mpfr_clear_flags ();
+ inex2 = mpfr_root (y2, x, k, rnd);
+ flags2 = __gmpfr_flags;
+ if (!(mpfr_equal_p (y1, y2) && SAME_SIGN (inex1, inex2) &&
+ flags1 == flags2))
+ {
+ printf ("Error in cmp_pow on h=%d, i=%d, rnd=%s\n",
+ h, i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd));
+ printf ("x = ");
+ mpfr_dump (x);
+ printf ("pow = ");
+ mpfr_dump (y1);
+ printf ("with inex = %d, flags =", inex1);
+ flags_out (flags1);
+ printf ("root = ");
+ mpfr_dump (y2);
+ printf ("with inex = %d, flags =", inex2);
+ flags_out (flags2);
+ exit (1);
+ }
+ }
+ }
+
+ mpfr_clears (x, y1, y2, (mpfr_ptr) 0);
+}
+
int
main (void)
{
@@ -270,7 +415,10 @@
tests_start_mpfr ();
+ exact_powers (3, 1000);
special ();
+ bigint ();
+ cmp_pow ();
mpfr_init (x);
@@ -329,6 +477,13 @@
test_generic_ui (2, 200, 30);
+ bad_cases (root2, pow2, "mpfr_root[2]", 8, -256, 255, 4, 128, 800, 40);
+ bad_cases (root3, pow3, "mpfr_root[3]", 8, -256, 255, 4, 128, 800, 40);
+ bad_cases (root4, pow4, "mpfr_root[4]", 8, -256, 255, 4, 128, 800, 40);
+ bad_cases (root5, pow5, "mpfr_root[5]", 8, -256, 255, 4, 128, 800, 40);
+ bad_cases (root17, pow17, "mpfr_root[17]", 8, -256, 255, 4, 128, 800, 40);
+ bad_cases (root120, pow120, "mpfr_root[120]", 8, -256, 255, 4, 128, 800, 40);
+
tests_end_mpfr ();
return 0;
}