Andras Slemmer f978eab8d1 Add 'sgx-jvm/linux-sgx/' from commit '2df43c54f3a215b2fe927995c7a8869054cccf8f'
git-subtree-dir: sgx-jvm/linux-sgx
git-subtree-mainline: d52accb52c25c2ccde637f00ad0d6791b3d1ebf7
git-subtree-split: 2df43c54f3a215b2fe927995c7a8869054cccf8f
2017-03-13 12:18:12 +00:00

134 lines
4.0 KiB
C

//===-- lib/comparetf2.c - Quad-precision comparisons -------------*- C -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// // This file implements the following soft-float comparison routines:
//
// __eqtf2 __getf2 __unordtf2
// __letf2 __gttf2
// __lttf2
// __netf2
//
// The semantics of the routines grouped in each column are identical, so there
// is a single implementation for each, and wrappers to provide the other names.
//
// The main routines behave as follows:
//
// __letf2(a,b) returns -1 if a < b
// 0 if a == b
// 1 if a > b
// 1 if either a or b is NaN
//
// __getf2(a,b) returns -1 if a < b
// 0 if a == b
// 1 if a > b
// -1 if either a or b is NaN
//
// __unordtf2(a,b) returns 0 if both a and b are numbers
// 1 if either a or b is NaN
//
// Note that __letf2( ) and __getf2( ) are identical except in their handling of
// NaN values.
//
//===----------------------------------------------------------------------===//
#define QUAD_PRECISION
#include "fp_lib.h"
#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
enum LE_RESULT {
LE_LESS = -1,
LE_EQUAL = 0,
LE_GREATER = 1,
LE_UNORDERED = 1
};
COMPILER_RT_ABI enum LE_RESULT __letf2(fp_t a, fp_t b) {
const srep_t aInt = toRep(a);
const srep_t bInt = toRep(b);
const rep_t aAbs = aInt & absMask;
const rep_t bAbs = bInt & absMask;
// If either a or b is NaN, they are unordered.
if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
// If a and b are both zeros, they are equal.
if ((aAbs | bAbs) == 0) return LE_EQUAL;
// If at least one of a and b is positive, we get the same result comparing
// a and b as signed integers as we would with a floating-point compare.
if ((aInt & bInt) >= 0) {
if (aInt < bInt) return LE_LESS;
else if (aInt == bInt) return LE_EQUAL;
else return LE_GREATER;
}
else {
// Otherwise, both are negative, so we need to flip the sense of the
// comparison to get the correct result. (This assumes a twos- or ones-
// complement integer representation; if integers are represented in a
// sign-magnitude representation, then this flip is incorrect).
if (aInt > bInt) return LE_LESS;
else if (aInt == bInt) return LE_EQUAL;
else return LE_GREATER;
}
}
enum GE_RESULT {
GE_LESS = -1,
GE_EQUAL = 0,
GE_GREATER = 1,
GE_UNORDERED = -1 // Note: different from LE_UNORDERED
};
COMPILER_RT_ABI enum GE_RESULT __getf2(fp_t a, fp_t b) {
const srep_t aInt = toRep(a);
const srep_t bInt = toRep(b);
const rep_t aAbs = aInt & absMask;
const rep_t bAbs = bInt & absMask;
if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
if ((aAbs | bAbs) == 0) return GE_EQUAL;
if ((aInt & bInt) >= 0) {
if (aInt < bInt) return GE_LESS;
else if (aInt == bInt) return GE_EQUAL;
else return GE_GREATER;
} else {
if (aInt > bInt) return GE_LESS;
else if (aInt == bInt) return GE_EQUAL;
else return GE_GREATER;
}
}
COMPILER_RT_ABI int __unordtf2(fp_t a, fp_t b) {
const rep_t aAbs = toRep(a) & absMask;
const rep_t bAbs = toRep(b) & absMask;
return aAbs > infRep || bAbs > infRep;
}
// The following are alternative names for the preceding routines.
COMPILER_RT_ABI enum LE_RESULT __eqtf2(fp_t a, fp_t b) {
return __letf2(a, b);
}
COMPILER_RT_ABI enum LE_RESULT __lttf2(fp_t a, fp_t b) {
return __letf2(a, b);
}
COMPILER_RT_ABI enum LE_RESULT __netf2(fp_t a, fp_t b) {
return __letf2(a, b);
}
COMPILER_RT_ABI enum GE_RESULT __gttf2(fp_t a, fp_t b) {
return __getf2(a, b);
}
#endif