corda/src/x86.h
Joel Dice 00307b9b30 fix Mac OS MySystem::visit and MySystem::Thread::interrupt implementations
On Mac OS, signals sent using pthread_kill are never delivered if the
target thread is blocked (e.g. acquiring a lock or waiting on a
condition), so we can't rely on it and must use the Mach-specific
thread execution API instead to implement Thread.getStackTrace.

For Thread.interrupt, we must not only use pthread_kill but also
pthread_cond_signal to ensure the thread is woken up.
2011-02-19 14:20:02 -07:00

305 lines
8.1 KiB
C++

/* Copyright (c) 2008-2010, Avian Contributors
Permission to use, copy, modify, and/or distribute this software
for any purpose with or without fee is hereby granted, provided
that the above copyright notice and this permission notice appear
in all copies.
There is NO WARRANTY for this software. See license.txt for
details. */
#ifndef X86_H
#define X86_H
#include "types.h"
#include "common.h"
#ifdef _MSC_VER
# include "windows.h"
# pragma push_macro("assert")
# include "intrin.h"
# pragma pop_macro("assert")
# undef interface
#endif
#if (defined ARCH_x86_32) || (defined PLATFORM_WINDOWS)
# define VA_LIST(x) (&(x))
#else
# define VA_LIST(x) (x)
#endif
#ifdef __APPLE__
# include "mach/mach_types.h"
# include "mach/i386/thread_act.h"
# include "mach/i386/thread_status.h"
# if __DARWIN_UNIX03 && defined(_STRUCT_X86_EXCEPTION_STATE32)
# define FIELD(x) __##x
# else
# define FIELD(x) x
# endif
#endif
#ifdef ARCH_x86_32
# ifdef __APPLE__
# define THREAD_STATE x86_THREAD_STATE32
# define THREAD_STATE_TYPE x86_thread_state32_t
# define THREAD_STATE_COUNT x86_THREAD_STATE32_COUNT
# define THREAD_STATE_IP(state) ((state).FIELD(eip))
# define THREAD_STATE_STACK(state) ((state).FIELD(esp))
# define THREAD_STATE_THREAD(state) ((state).FIELD(ebx))
# define THREAD_STATE_LINK(state) ((state).FIELD(ecx))
# define THREAD_STATE_FRAME(state) ((state).FIELD(ebp))
# define IP_REGISTER(context) \
THREAD_STATE_IP(context->uc_mcontext->FIELD(ss))
# define STACK_REGISTER(context) \
THREAD_STATE_STACK(context->uc_mcontext->FIELD(ss))
# define THREAD_REGISTER(context) \
THREAD_STATE_THREAD(context->uc_mcontext->FIELD(ss))
# define LINK_REGISTER(context) \
THREAD_STATE_LINK(context->uc_mcontext->FIELD(ss))
# define FRAME_REGISTER(context) \
THREAD_STATE_FRAME(context->uc_mcontext->FIELD(ss))
# else
# define IP_REGISTER(context) (context->uc_mcontext.gregs[REG_EIP])
# define STACK_REGISTER(context) (context->uc_mcontext.gregs[REG_ESP])
# define THREAD_REGISTER(context) (context->uc_mcontext.gregs[REG_EBX])
# define LINK_REGISTER(context) (context->uc_mcontext.gregs[REG_ECX])
# define FRAME_REGISTER(context) (context->uc_mcontext.gregs[REG_EBP])
# endif
extern "C" uint64_t
vmNativeCall(void* function, void* stack, unsigned stackSize,
unsigned returnType);
namespace vm {
inline uint64_t
dynamicCall(void* function, uintptr_t* arguments, uint8_t*,
unsigned, unsigned argumentsSize, unsigned returnType)
{
return vmNativeCall(function, arguments, argumentsSize, returnType);
}
} // namespace vm
#elif defined ARCH_x86_64
# ifdef __APPLE__
# define THREAD_STATE x86_THREAD_STATE64
# define THREAD_STATE_TYPE x86_thread_state64_t
# define THREAD_STATE_COUNT x86_THREAD_STATE64_COUNT
# define THREAD_STATE_IP(state) ((state).FIELD(rip))
# define THREAD_STATE_STACK(state) ((state).FIELD(rsp))
# define THREAD_STATE_THREAD(state) ((state).FIELD(rbx))
# define THREAD_STATE_LINK(state) ((state).FIELD(rcx))
# define THREAD_STATE_FRAME(state) ((state).FIELD(rbp))
# define IP_REGISTER(context) \
THREAD_STATE_IP(context->uc_mcontext->FIELD(ss))
# define STACK_REGISTER(context) \
THREAD_STATE_STACK(context->uc_mcontext->FIELD(ss))
# define THREAD_REGISTER(context) \
THREAD_STATE_THREAD(context->uc_mcontext->FIELD(ss))
# define LINK_REGISTER(context) \
THREAD_STATE_LINK(context->uc_mcontext->FIELD(ss))
# define FRAME_REGISTER(context) \
THREAD_STATE_FRAME(context->uc_mcontext->FIELD(ss))
# else
# define IP_REGISTER(context) (context->uc_mcontext.gregs[REG_RIP])
# define STACK_REGISTER(context) (context->uc_mcontext.gregs[REG_RSP])
# define THREAD_REGISTER(context) (context->uc_mcontext.gregs[REG_RBX])
# define LINK_REGISTER(context) (context->uc_mcontext.gregs[REG_RCX])
# define FRAME_REGISTER(context) (context->uc_mcontext.gregs[REG_RBP])
# endif
extern "C" uint64_t
# ifdef PLATFORM_WINDOWS
vmNativeCall(void* function, void* stack, unsigned stackSize,
unsigned returnType);
# else
vmNativeCall(void* function, void* stack, unsigned stackSize,
void* gprTable, void* sseTable, unsigned returnType);
# endif
namespace vm {
# ifdef PLATFORM_WINDOWS
inline uint64_t
dynamicCall(void* function, uint64_t* arguments, UNUSED uint8_t* argumentTypes,
unsigned argumentCount, unsigned, unsigned returnType)
{
return vmNativeCall(function, arguments, argumentCount, returnType);
}
# else
inline uint64_t
dynamicCall(void* function, uintptr_t* arguments, uint8_t* argumentTypes,
unsigned argumentCount, unsigned, unsigned returnType)
{
const unsigned GprCount = 6;
uint64_t gprTable[GprCount];
unsigned gprIndex = 0;
const unsigned SseCount = 8;
uint64_t sseTable[SseCount];
unsigned sseIndex = 0;
uint64_t stack[argumentCount];
unsigned stackIndex = 0;
for (unsigned i = 0; i < argumentCount; ++i) {
switch (argumentTypes[i]) {
case FLOAT_TYPE:
case DOUBLE_TYPE: {
if (sseIndex < SseCount) {
sseTable[sseIndex++] = arguments[i];
} else {
stack[stackIndex++] = arguments[i];
}
} break;
default: {
if (gprIndex < GprCount) {
gprTable[gprIndex++] = arguments[i];
} else {
stack[stackIndex++] = arguments[i];
}
} break;
}
}
return vmNativeCall(function, stack, stackIndex * BytesPerWord,
(gprIndex ? gprTable : 0),
(sseIndex ? sseTable : 0), returnType);
}
#endif
} // namespace vm
#else
# error unsupported architecture
#endif
namespace vm {
inline void
trap()
{
#ifdef _MSC_VER
__asm int 3
#else
asm("int3");
#endif
}
inline void
programOrderMemoryBarrier()
{
compileTimeMemoryBarrier();
}
inline void
storeStoreMemoryBarrier()
{
programOrderMemoryBarrier();
}
inline void
storeLoadMemoryBarrier()
{
#ifdef _MSC_VER
MemoryBarrier();
#elif defined ARCH_x86_32
__asm__ __volatile__("lock; addl $0,0(%%esp)": : :"memory");
#elif defined ARCH_x86_64
__asm__ __volatile__("mfence": : :"memory");
#endif // ARCH_x86_64
}
inline void
loadMemoryBarrier()
{
programOrderMemoryBarrier();
}
inline void
syncInstructionCache(const void*, unsigned)
{
programOrderMemoryBarrier();
}
#ifdef USE_ATOMIC_OPERATIONS
inline bool
atomicCompareAndSwap32(uint32_t* p, uint32_t old, uint32_t new_)
{
#ifdef _MSC_VER
return old == InterlockedCompareExchange
(reinterpret_cast<LONG*>(p), new_, old);
#elif (__GNUC__ >= 4) && (__GNUC_MINOR__ >= 1)
return __sync_bool_compare_and_swap(p, old, new_);
#else
uint8_t result;
__asm__ __volatile__("lock; cmpxchgl %2, %0; setz %1"
: "=m"(*p), "=q"(result)
: "r"(new_), "a"(old), "m"(*p)
: "memory");
return result != 0;
#endif
}
inline bool
atomicCompareAndSwap64(uint64_t* p, uint64_t old, uint64_t new_)
{
#ifdef _MSC_VER
return old == InterlockedCompareExchange64
(reinterpret_cast<LONGLONG*>(p), new_, old);
#elif (__GNUC__ >= 4) && (__GNUC_MINOR__ >= 1)
return __sync_bool_compare_and_swap(p, old, new_);
#elif defined ARCH_x86_32
uint8_t result;
__asm__ __volatile__("lock; cmpxchg8b %0; setz %1"
: "=m"(*p), "=q"(result)
: "a"(static_cast<uint32_t>(old)),
"d"(static_cast<uint32_t>(old >> 32)),
"b"(static_cast<uint32_t>(new_)),
"c"(static_cast<uint32_t>(new_ >> 32)),
"m"(*p)
: "memory");
return result != 0;
#else
uint8_t result;
__asm__ __volatile__("lock; cmpxchgq %2, %0; setz %1"
: "=m"(*p), "=q"(result)
: "r"(new_), "a"(old), "m"(*p)
: "memory");
return result != 0;
#endif
}
inline bool
atomicCompareAndSwap(uintptr_t* p, uintptr_t old, uintptr_t new_)
{
#ifdef ARCH_x86_32
return atomicCompareAndSwap32(reinterpret_cast<uint32_t*>(p), old, new_);
#elif defined ARCH_x86_64
return atomicCompareAndSwap64(reinterpret_cast<uint64_t*>(p), old, new_);
#endif // ARCH_x86_64
}
#endif // USE_ATOMIC_OPERATIONS
} // namespace vm
#endif//X86_H