corda/sgx-jvm/linux-sgx/sdk/tseal/tSeal.cpp
Andras Slemmer f978eab8d1 Add 'sgx-jvm/linux-sgx/' from commit '2df43c54f3a215b2fe927995c7a8869054cccf8f'
git-subtree-dir: sgx-jvm/linux-sgx
git-subtree-mainline: d52accb52c
git-subtree-split: 2df43c54f3
2017-03-13 12:18:12 +00:00

238 lines
9.6 KiB
C++

/*
* Copyright (C) 2011-2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
// tSeal.cpp - Trusted Sealing Routines
#include "sgx_tseal.h"
#include <stdlib.h>
#include <string.h>
#include "sgx_trts.h"
#include "sgx_report.h"
#include "se_cdefs.h"
#include "sgx_utils.h"
#include "tSeal_internal.h"
extern "C" sgx_status_t sgx_seal_data(const uint32_t additional_MACtext_length,
const uint8_t *p_additional_MACtext, const uint32_t text2encrypt_length,
const uint8_t *p_text2encrypt, const uint32_t sealed_data_size,
sgx_sealed_data_t *p_sealed_data)
{
sgx_status_t err = SGX_ERROR_UNEXPECTED;
sgx_attributes_t attribute_mask;
attribute_mask.flags = SGX_FLAGS_RESERVED | SGX_FLAGS_INITTED | SGX_FLAGS_DEBUG;
attribute_mask.xfrm = 0x0;
err = sgx_seal_data_ex(SGX_KEYPOLICY_MRSIGNER, attribute_mask, TSEAL_DEFAULT_MISCMASK, additional_MACtext_length,
p_additional_MACtext, text2encrypt_length, p_text2encrypt, sealed_data_size, p_sealed_data);
return err;
}
extern "C" sgx_status_t sgx_seal_data_ex(const uint16_t key_policy,
const sgx_attributes_t attribute_mask,
const sgx_misc_select_t misc_mask,
const uint32_t additional_MACtext_length,
const uint8_t *p_additional_MACtext, const uint32_t text2encrypt_length,
const uint8_t *p_text2encrypt, const uint32_t sealed_data_size,
sgx_sealed_data_t *p_sealed_data)
{
sgx_status_t err = SGX_ERROR_UNEXPECTED;
sgx_report_t report;
sgx_key_id_t keyID;
sgx_key_request_t tmp_key_request;
uint8_t payload_iv[SGX_SEAL_IV_SIZE];
memset(&payload_iv, 0, sizeof(payload_iv));
uint32_t sealedDataSize = sgx_calc_sealed_data_size(additional_MACtext_length,text2encrypt_length);
// Check for overflow
if (sealedDataSize == UINT32_MAX)
{
return SGX_ERROR_INVALID_PARAMETER;
}
//
// Check parameters
//
// check key_request->key_policy reserved bits are not set and one of policy bits are set
if ((key_policy & ~(SGX_KEYPOLICY_MRENCLAVE | SGX_KEYPOLICY_MRSIGNER)) ||
((key_policy & (SGX_KEYPOLICY_MRENCLAVE | SGX_KEYPOLICY_MRSIGNER)) == 0))
{
return SGX_ERROR_INVALID_PARAMETER;
}
if ( !(attribute_mask.flags & SGX_FLAGS_INITTED)
|| !(attribute_mask.flags & SGX_FLAGS_DEBUG) )
{
return SGX_ERROR_INVALID_PARAMETER;
}
if ((additional_MACtext_length > 0) && (p_additional_MACtext == NULL))
{
return SGX_ERROR_INVALID_PARAMETER;
}
if ((text2encrypt_length == 0) || (p_text2encrypt == NULL) || (!sgx_is_within_enclave(p_text2encrypt,text2encrypt_length)))
{
return SGX_ERROR_INVALID_PARAMETER;
}
// Ensure sealed data blob is within an enclave during the sealing process
if ((p_sealed_data == NULL) || (!sgx_is_within_enclave(p_sealed_data,sealed_data_size)))
{
return SGX_ERROR_INVALID_PARAMETER;
}
// Ensure aad data does not cross enclave boundary
if ((additional_MACtext_length > 0) &&
(!(sgx_is_within_enclave(p_additional_MACtext,additional_MACtext_length) || sgx_is_outside_enclave(p_additional_MACtext, additional_MACtext_length))))
{
return SGX_ERROR_INVALID_PARAMETER;
}
if (sealedDataSize != sealed_data_size)
{
return SGX_ERROR_INVALID_PARAMETER;
}
memset(&report, 0, sizeof(sgx_report_t));
memset(p_sealed_data, 0, sealedDataSize);
memset(&keyID, 0, sizeof(sgx_key_id_t));
memset(&tmp_key_request, 0, sizeof(sgx_key_request_t));
// Get the report to obtain isv_svn and cpu_svn
err = sgx_create_report(NULL, NULL, &report);
if (err != SGX_SUCCESS)
{
goto clear_return;
}
// Get a random number to populate the key_id of the key_request
err = sgx_read_rand(reinterpret_cast<uint8_t *>(&keyID), sizeof(sgx_key_id_t));
if (err != SGX_SUCCESS)
{
goto clear_return;
}
memcpy(&(tmp_key_request.cpu_svn), &(report.body.cpu_svn), sizeof(sgx_cpu_svn_t));
memcpy(&(tmp_key_request.isv_svn), &(report.body.isv_svn), sizeof(sgx_isv_svn_t));
tmp_key_request.key_name = SGX_KEYSELECT_SEAL;
tmp_key_request.key_policy = key_policy;
tmp_key_request.attribute_mask.flags = attribute_mask.flags;
tmp_key_request.attribute_mask.xfrm = attribute_mask.xfrm;
memcpy(&(tmp_key_request.key_id), &keyID, sizeof(sgx_key_id_t));
tmp_key_request.misc_mask = misc_mask;
err = sgx_seal_data_iv(additional_MACtext_length, p_additional_MACtext,
text2encrypt_length, p_text2encrypt, payload_iv, &tmp_key_request, p_sealed_data);
if (err == SGX_SUCCESS)
{
// Copy data from the temporary key request buffer to the sealed data blob
memcpy(&(p_sealed_data->key_request), &tmp_key_request, sizeof(sgx_key_request_t));
}
clear_return:
// Clear temp state
memset_s(&report, sizeof(sgx_report_t), 0, sizeof(sgx_report_t));
memset_s(&keyID, sizeof(sgx_key_id_t), 0, sizeof(sgx_key_id_t));
return err;
}
extern "C" sgx_status_t sgx_unseal_data(const sgx_sealed_data_t *p_sealed_data, uint8_t *p_additional_MACtext,
uint32_t *p_additional_MACtext_length, uint8_t *p_decrypted_text, uint32_t *p_decrypted_text_length)
{
sgx_status_t err = SGX_ERROR_UNEXPECTED;
// Ensure the the sgx_sealed_data_t members are all inside enclave before using them.
if ((p_sealed_data == NULL) || (!sgx_is_within_enclave(p_sealed_data,sizeof(sgx_sealed_data_t))))
{
return SGX_ERROR_INVALID_PARAMETER;
}
uint32_t encrypt_text_length = sgx_get_encrypt_txt_len(p_sealed_data);
if(encrypt_text_length == UINT32_MAX)
{
return SGX_ERROR_MAC_MISMATCH; // Return error indicating the blob is corrupted
}
uint32_t add_text_length = sgx_get_add_mac_txt_len(p_sealed_data);
if(add_text_length == UINT32_MAX)
{
return SGX_ERROR_MAC_MISMATCH; // Return error indicating the blob is corrupted
}
uint32_t sealedDataSize = sgx_calc_sealed_data_size(add_text_length,encrypt_text_length);
if (sealedDataSize == UINT32_MAX)
{
return SGX_ERROR_MAC_MISMATCH; // Return error indicating the blob is corrupted
}
//
// Check parameters
//
// Ensure sealed data blob is within an enclave during the sealing process
if (!sgx_is_within_enclave(p_sealed_data,sealedDataSize))
{
return SGX_ERROR_INVALID_PARAMETER;
}
if ((add_text_length > 0) && ((p_additional_MACtext == NULL) || (p_additional_MACtext_length == NULL)))
{
return SGX_ERROR_INVALID_PARAMETER;
}
if ((encrypt_text_length < 1) || (p_decrypted_text == NULL) || (p_decrypted_text_length == NULL))
{
return SGX_ERROR_INVALID_PARAMETER;
}
if (!sgx_is_within_enclave(p_decrypted_text,encrypt_text_length))
{
return SGX_ERROR_INVALID_PARAMETER;
}
if (!sgx_is_within_enclave(p_decrypted_text_length,sizeof(p_decrypted_text_length)))
{
return SGX_ERROR_INVALID_PARAMETER;
}
// Ensure aad data does not cross enclave boundary
if ((add_text_length > 0) &&
(!(sgx_is_within_enclave(p_additional_MACtext,add_text_length) || sgx_is_outside_enclave(p_additional_MACtext, add_text_length))))
{
return SGX_ERROR_INVALID_PARAMETER;
}
if ((*p_decrypted_text_length) < encrypt_text_length)
{
return SGX_ERROR_INVALID_PARAMETER;
}
uint32_t additional_MACtext_length = (NULL != p_additional_MACtext_length) ? *p_additional_MACtext_length : 0;
if (additional_MACtext_length < add_text_length) {
return SGX_ERROR_INVALID_PARAMETER;
}
err = sgx_unseal_data_helper(p_sealed_data, p_additional_MACtext, add_text_length,
p_decrypted_text, encrypt_text_length);
if (err == SGX_SUCCESS)
{
*p_decrypted_text_length = encrypt_text_length;
if(p_additional_MACtext_length != NULL)
*p_additional_MACtext_length = add_text_length;
}
return err;
}