corda/classpath/java/util/TreeMap.java
Joel Dice c0d178d5f1 implement ConcurrentHashMap and AtomicReferenceArray
This is the simplest possible ConcurrentHashMap I could come up with
that works and is actually concurrent in the way one would expect.
It's pretty unconventional, being based on a persistent red-black
tree, and not particularly memory-efficient or cache-friendly.  I
think this is a good place to start, though, and it should perform
reasonably well for most workloads.  Patches for a more efficient
implementation are welcome!

I also implemented AtomicReferenceArray, since I was using it in my
first, naive attempt to implement ConcurrentHashMap.

I had to do a bit of refactoring, including moving some non-standard
stuff from java.util.Collections to avian.Data so I could make it
available to code outside the java.util package, which is why I had to
modify several unrelated files.
2014-03-12 10:44:24 -06:00

262 lines
5.9 KiB
Java

/* Copyright (c) 2008-2013, Avian Contributors
Permission to use, copy, modify, and/or distribute this software
for any purpose with or without fee is hereby granted, provided
that the above copyright notice and this permission notice appear
in all copies.
There is NO WARRANTY for this software. See license.txt for
details. */
package java.util;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
public class TreeMap<K,V> implements Map<K,V> {
private final Comparator<K> comparator;
private transient TreeSet<MyEntry<K,V>> set;
public TreeMap(Comparator<K> comparator) {
this.comparator = comparator;
initializeSet();
}
private void initializeSet() {
final Comparator<K> comparator = this.comparator != null ?
this.comparator : new Comparator<K>() {
public int compare(K a, K b) {
return ((Comparable) a).compareTo(b);
}
};
set = new TreeSet(new Comparator<MyEntry<K,V>>() {
public int compare(MyEntry<K,V> a, MyEntry<K,V> b) {
return comparator.compare(a.key, b.key);
}
});
}
public TreeMap() {
this(null);
}
public String toString() {
return avian.Data.toString(this);
}
public V get(Object key) {
MyEntry<K,V> e = set.find(new MyEntry(key, null));
return e == null ? null : e.value;
}
public V put(K key, V value) {
MyEntry<K,V> e = set.addAndReplace(new MyEntry(key, value));
return e == null ? null : e.value;
}
public void putAll(Map<? extends K,? extends V> elts) {
for (Map.Entry<? extends K, ? extends V> entry : elts.entrySet()) {
put(entry.getKey(), entry.getValue());
}
}
public V remove(Object key) {
MyEntry<K,V> e = set.removeAndReturn(new MyEntry(key, null));
return e == null ? null : e.value;
}
public void clear() {
set.clear();
}
public int size() {
return set.size();
}
public boolean isEmpty() {
return size() == 0;
}
public boolean containsKey(Object key) {
return set.contains(new MyEntry(key, null));
}
private boolean equal(Object a, Object b) {
return a == null ? b == null : a.equals(b);
}
public boolean containsValue(Object value) {
for (V v: values()) {
if (equal(v, value)) {
return true;
}
}
return false;
}
public Set<Entry<K, V>> entrySet() {
return (Set<Entry<K, V>>) (Set) set;
}
public Set<K> keySet() {
return new KeySet();
}
public Collection<V> values() {
return new Values();
}
private static class MyEntry<K,V> implements Entry<K,V> {
public final K key;
public V value;
public MyEntry(K key, V value) {
this.key = key;
this.value = value;
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
public V setValue(V value) {
V old = this.value;
this.value = value;
return old;
}
}
private class KeySet extends AbstractSet<K> {
public int size() {
return TreeMap.this.size();
}
public boolean isEmpty() {
return TreeMap.this.isEmpty();
}
public boolean contains(Object key) {
return containsKey(key);
}
public boolean add(K key) {
return set.addAndReplace(new MyEntry(key, null)) != null;
}
public boolean addAll(Collection<? extends K> collection) {
boolean change = false;
for (K k: collection) if (add(k)) change = true;
return change;
}
public boolean remove(Object key) {
return set.removeAndReturn(new MyEntry(key, null)) != null;
}
public Object[] toArray() {
return toArray(new Object[size()]);
}
public <T> T[] toArray(T[] array) {
return avian.Data.toArray(this, array);
}
public void clear() {
TreeMap.this.clear();
}
public Iterator<K> iterator() {
return new avian.Data.KeyIterator(set.iterator());
}
}
private class Values implements Collection<V> {
public int size() {
return TreeMap.this.size();
}
public boolean isEmpty() {
return TreeMap.this.isEmpty();
}
public boolean contains(Object value) {
return containsValue(value);
}
public boolean containsAll(Collection<?> c) {
if (c == null) {
throw new NullPointerException("collection is null");
}
Iterator<?> it = c.iterator();
while (it.hasNext()) {
if (! contains(it.next())) {
return false;
}
}
return true;
}
public boolean add(V value) {
throw new UnsupportedOperationException();
}
public boolean addAll(Collection<? extends V> collection) {
throw new UnsupportedOperationException();
}
public boolean remove(Object value) {
throw new UnsupportedOperationException();
}
public boolean removeAll(Collection<?> c) {
throw new UnsupportedOperationException();
}
public Object[] toArray() {
return toArray(new Object[size()]);
}
public <T> T[] toArray(T[] array) {
return avian.Data.toArray(this, array);
}
public void clear() {
TreeMap.this.clear();
}
public Iterator<V> iterator() {
return new avian.Data.ValueIterator(set.iterator());
}
}
public final static long serialVersionUID = 0x0cc1f63e2d256ae6l;
private void writeObject(ObjectOutputStream out) throws IOException {
out.defaultWriteObject();
out.writeInt(size());
for (Entry<K, V> entry : entrySet()) {
out.writeObject(entry.getKey());
out.writeObject(entry.getValue());
}
}
private void readObject(ObjectInputStream in) throws IOException {
in.defaultReadObject();
initializeSet();
int size = in.readInt();
for (int i = 0; i < size; i++) try {
put((K) in.readObject(), (V) in.readObject());
} catch (ClassNotFoundException e) {
throw new IOException(e);
}
}
}