mirror of
https://github.com/corda/corda.git
synced 2025-01-19 11:16:54 +00:00
9441de4c38
This release is used in conjunction with the linux-sgx-driver Intial release: https://github.com/01org/linux-sgx-driver commit-id: 0e865ce5e6b297a787bcdc12d98bada8174be6d7 Intel-id: 33399 Signed-off-by: Angie Chinchilla <angie.v.chinchilla@intel.com>
261 lines
9.5 KiB
C++
261 lines
9.5 KiB
C++
/*
|
|
* Copyright (C) 2011-2016 Intel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
|
|
#include "arch.h"
|
|
#include "sgx_error.h"
|
|
#include "tcs.h"
|
|
#include "se_trace.h"
|
|
#include "xsave.h"
|
|
#include "rts.h"
|
|
#include "enclave.h"
|
|
#include <assert.h>
|
|
#include <signal.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
|
|
|
|
typedef struct _ecall_param_t
|
|
{
|
|
tcs_t *tcs;
|
|
long fn; //long because we need register bandwith align on stack, refer to enter_enclave.h;
|
|
void *ocall_table;
|
|
void *ms;
|
|
CTrustThread *trust_thread;
|
|
} ecall_param_t;
|
|
|
|
#ifdef __x86_64__
|
|
#define REG_XIP REG_RIP
|
|
#define REG_XAX REG_RAX
|
|
#define REG_XBX REG_RBX
|
|
#define REG_XSI REG_RSI
|
|
#define REG_XBP REG_RBP
|
|
/*
|
|
* refer to enter_enclave.h
|
|
* stack high address <-------------
|
|
* |rip|rbp|rbx|r10|r13|r14|r15|r8|rcx|rdx|rsi|rdi|
|
|
* ^ ^
|
|
* | <-rbp | <-param4
|
|
*/
|
|
#define ECALL_PARAM (reinterpret_cast<ecall_param_t*>(context->uc_mcontext.gregs[REG_RBP] - 10 * 8))
|
|
#else
|
|
#define REG_XIP REG_EIP
|
|
#define REG_XAX REG_EAX
|
|
#define REG_XBX REG_EBX
|
|
#define REG_XSI REG_ESI
|
|
#define REG_XBP REG_EBP
|
|
/*
|
|
* refer to enter_enclave.h
|
|
* stack high address <-------------
|
|
* |param4|param3|param2|param2|param0|eip|ebp|
|
|
* ^
|
|
* | <-ebp
|
|
*/
|
|
#define ECALL_PARAM (reinterpret_cast<ecall_param_t*>(context->uc_mcontext.gregs[REG_EBP] + 2 * 4))
|
|
#endif
|
|
|
|
extern "C" void *get_aep();
|
|
extern "C" void *get_eenterp();
|
|
extern "C" void *get_eretp();
|
|
static struct sigaction g_old_sigact[_NSIG];
|
|
|
|
void reg_sig_handler();
|
|
|
|
void sig_handler(int signum, siginfo_t* siginfo, void *priv)
|
|
{
|
|
SE_TRACE(SE_TRACE_DEBUG, "signal handler is triggered\n");
|
|
ucontext_t* context = reinterpret_cast<ucontext_t *>(priv);
|
|
unsigned int *xip = reinterpret_cast<unsigned int *>(context->uc_mcontext.gregs[REG_XIP]);
|
|
size_t xax = context->uc_mcontext.gregs[REG_XAX];
|
|
#ifndef NDEBUG
|
|
/* `xbx' is only used in assertions. */
|
|
size_t xbx = context->uc_mcontext.gregs[REG_XBX];
|
|
#endif
|
|
ecall_param_t *param = ECALL_PARAM;
|
|
|
|
//the case of exception on ERESUME or within enclave.
|
|
//We can't distinguish ERESUME exception from exception within enclave. We assume it is the exception within enclave.
|
|
//If it is ERESUME exception, it will raise another exception in ecall and ecall will return error.
|
|
if(xip == get_aep()
|
|
&& SE_ERESUME == xax)
|
|
{
|
|
assert(ENCLU == (*xip & 0xffffff));
|
|
//suppose the exception is within enclave.
|
|
SE_TRACE(SE_TRACE_NOTICE, "exception on ERESUME\n");
|
|
//The ecall looks recursively, but it will not cause infinite call.
|
|
//If exception is raised in trts again and again, the SSA will overflow, and finally it is EENTER exception.
|
|
assert(reinterpret_cast<tcs_t *>(xbx) == param->tcs);
|
|
CEnclave *enclave = param->trust_thread->get_enclave();
|
|
unsigned int ret = enclave->ecall(ECMD_EXCEPT, param->ocall_table, NULL);
|
|
if(SGX_SUCCESS == ret)
|
|
{
|
|
//ERESUME execute
|
|
return;
|
|
}
|
|
//If the exception is caused by enclave lost or internal stack overrun, then return the error code to ecall caller elegantly.
|
|
else if(SGX_ERROR_ENCLAVE_LOST == ret || SGX_ERROR_STACK_OVERRUN == ret)
|
|
{
|
|
//enter_enlcave function will return with ret which is from tRTS;
|
|
context->uc_mcontext.gregs[REG_XIP] = reinterpret_cast<greg_t>(get_eretp());
|
|
context->uc_mcontext.gregs[REG_XSI] = ret;
|
|
return;
|
|
}
|
|
//If we can't fix the exception within enclave, then give the handle to other signal hanlder.
|
|
//Call the previous signal handler. The default signal handler should terminate the application.
|
|
|
|
enclave->rdunlock();
|
|
CEnclavePool::instance()->unref_enclave(enclave);
|
|
}
|
|
//the case of exception on EENTER instruction.
|
|
else if(xip == get_eenterp()
|
|
&& SE_EENTER == xax)
|
|
{
|
|
assert(reinterpret_cast<tcs_t *>(xbx) == param->tcs);
|
|
assert(ENCLU == (*xip & 0xffffff));
|
|
SE_TRACE(SE_TRACE_NOTICE, "exception on EENTER\n");
|
|
//enter_enlcave function will return with SE_ERROR_ENCLAVE_LOST
|
|
context->uc_mcontext.gregs[REG_XIP] = reinterpret_cast<greg_t>(get_eretp());
|
|
context->uc_mcontext.gregs[REG_XSI] = SGX_ERROR_ENCLAVE_LOST;
|
|
return;
|
|
}
|
|
|
|
SE_TRACE(SE_TRACE_DEBUG, "NOT enclave signal\n");
|
|
//it is not SE exception. if the old signal handler is default signal handler, we reset signal handler.
|
|
//raise the signal again, and the default signal handler will be called.
|
|
if(SIG_DFL == g_old_sigact[signum].sa_handler)
|
|
{
|
|
signal(signum, SIG_DFL);
|
|
raise(signum);
|
|
}
|
|
//if there is old signal handler, we need transfer the signal to the old signal handler;
|
|
else
|
|
{
|
|
if(!(g_old_sigact[signum].sa_flags & SA_NODEFER))
|
|
sigaddset(&g_old_sigact[signum].sa_mask, signum);
|
|
|
|
sigset_t cur_set;
|
|
pthread_sigmask(SIG_SETMASK, &g_old_sigact[signum].sa_mask, &cur_set);
|
|
|
|
if(g_old_sigact[signum].sa_flags & SA_SIGINFO)
|
|
{
|
|
g_old_sigact[signum].sa_sigaction(signum, siginfo, priv);
|
|
}
|
|
else
|
|
{
|
|
g_old_sigact[signum].sa_handler(signum);
|
|
}
|
|
|
|
pthread_sigmask(SIG_SETMASK, &cur_set, NULL);
|
|
|
|
//If the g_old_sigact set SA_RESETHAND, it will break the chain which means
|
|
//g_old_sigact->next_old_sigact will not be called. Our signal handler does not
|
|
//responsable for that. We just follow what os do on SA_RESETHAND.
|
|
if(g_old_sigact[signum].sa_flags & SA_RESETHAND)
|
|
g_old_sigact[signum].sa_handler = SIG_DFL;
|
|
}
|
|
}
|
|
|
|
void reg_sig_handler()
|
|
{
|
|
int ret = 0;
|
|
struct sigaction sig_act;
|
|
SE_TRACE(SE_TRACE_DEBUG, "signal handler is registered\n");
|
|
|
|
memset(&sig_act, 0, sizeof(sig_act));
|
|
sig_act.sa_sigaction = sig_handler;
|
|
sig_act.sa_flags = SA_SIGINFO | SA_NODEFER | SA_RESTART;
|
|
sigemptyset(&sig_act.sa_mask);
|
|
if(sigprocmask(SIG_SETMASK, NULL, &sig_act.sa_mask))
|
|
{
|
|
SE_TRACE(SE_TRACE_WARNING, "%s\n", strerror(errno));
|
|
}
|
|
else
|
|
{
|
|
sigdelset(&sig_act.sa_mask, SIGSEGV);
|
|
sigdelset(&sig_act.sa_mask, SIGFPE);
|
|
sigdelset(&sig_act.sa_mask, SIGILL);
|
|
sigdelset(&sig_act.sa_mask, SIGBUS);
|
|
sigdelset(&sig_act.sa_mask, SIGTRAP);
|
|
}
|
|
|
|
ret = sigaction(SIGSEGV, &sig_act, &g_old_sigact[SIGSEGV]);
|
|
if (0 != ret) abort();
|
|
ret = sigaction(SIGFPE, &sig_act, &g_old_sigact[SIGFPE]);
|
|
if (0 != ret) abort();
|
|
ret = sigaction(SIGILL, &sig_act, &g_old_sigact[SIGILL]);
|
|
if (0 != ret) abort();
|
|
ret = sigaction(SIGBUS, &sig_act, &g_old_sigact[SIGBUS]);
|
|
if (0 != ret) abort();
|
|
ret = sigaction(SIGTRAP, &sig_act, &g_old_sigact[SIGTRAP]);
|
|
if (0 != ret) abort();
|
|
}
|
|
|
|
//trust_thread is saved at stack for ocall.
|
|
#define enter_enclave __morestack
|
|
|
|
extern "C" int enter_enclave(const tcs_t *tcs, const long fn, const void *ocall_table, const void *ms, CTrustThread *trust_thread);
|
|
|
|
int do_ecall(const int fn, const void *ocall_table, const void *ms, CTrustThread *trust_thread)
|
|
{
|
|
int status = SGX_ERROR_UNEXPECTED;
|
|
|
|
#ifdef SE_SIM
|
|
CEnclave* enclave = trust_thread->get_enclave();
|
|
//check if it is current pid, it is to simulate fork() scenario on HW
|
|
sgx_enclave_id_t eid = enclave->get_enclave_id();
|
|
if((pid_t)(eid >> 32) != getpid())
|
|
return SGX_ERROR_ENCLAVE_LOST;
|
|
#endif
|
|
|
|
tcs_t *tcs = trust_thread->get_tcs();
|
|
//seh_handler.cpp have the same code to save and restore pf register.
|
|
//put the save register code here, because we want remind maintainer we should do it near EENTER
|
|
uint8_t buffer[FXSAVE_SIZE];
|
|
save_and_clean_xfeature_regs(buffer);
|
|
|
|
status = enter_enclave(tcs, fn, ocall_table, ms, trust_thread);
|
|
|
|
restore_xfeature_regs(buffer);
|
|
|
|
return status;
|
|
}
|
|
|
|
int do_ocall(const bridge_fn_t bridge, void *ms)
|
|
{
|
|
int error = SGX_ERROR_UNEXPECTED;
|
|
|
|
error = bridge(ms);
|
|
|
|
save_and_clean_xfeature_regs(NULL);
|
|
|
|
return error;
|
|
}
|