corda/SampleCode/PowerTransition/Enclave/Enclave.cpp
llly 6662022bf8 Linux 1.7 Open Source Gold release
Signed-off-by: Li, Xun <xun.li@email.com>
2016-12-20 09:47:15 +09:00

165 lines
6.0 KiB
C++

/*
* Copyright (C) 2011-2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "string.h"
#include "stdlib.h"
#include "stdio.h"
#include "sgx_trts.h"
#include "sgx_thread.h"
#include "sgx_tseal.h"
#include "Enclave_t.h"
uint32_t g_secret;
sgx_thread_mutex_t g_mutex = SGX_THREAD_MUTEX_INITIALIZER;
static inline void free_allocated_memory(void *pointer)
{
if(pointer != NULL)
{
free(pointer);
pointer = NULL;
}
}
int initialize_enclave(struct sealed_buf_t *sealed_buf)
{
// sealed_buf == NULL indicates it is the first time to initialize the enclave
if(sealed_buf == NULL)
{
sgx_thread_mutex_lock(&g_mutex);
g_secret = 0;
sgx_thread_mutex_unlock(&g_mutex);
return 0;
}
// It is not the first time to initialize the enclave
// Reinitialize the enclave to recover the secret data from the input backup sealed data.
uint32_t len = sizeof(sgx_sealed_data_t) + sizeof(uint32_t);
//Check the sealed_buf length and check the outside pointers deeply
if(sealed_buf->sealed_buf_ptr[MOD2(sealed_buf->index)] == NULL ||
sealed_buf->sealed_buf_ptr[MOD2(sealed_buf->index + 1)] == NULL ||
!sgx_is_outside_enclave(sealed_buf->sealed_buf_ptr[MOD2(sealed_buf->index)], len) ||
!sgx_is_outside_enclave(sealed_buf->sealed_buf_ptr[MOD2(sealed_buf->index + 1)], len))
{
print("Incorrect input parameter(s).\n");
return -1;
}
// Retrieve the secret from current backup sealed data
uint32_t unsealed_data = 0;
uint32_t unsealed_data_length = sizeof(g_secret);
uint8_t *plain_text = NULL;
uint32_t plain_text_length = 0;
uint8_t *temp_sealed_buf = (uint8_t *)malloc(len);
if(temp_sealed_buf == NULL)
{
print("Out of memory.\n");
return -1;
}
sgx_thread_mutex_lock(&g_mutex);
memcpy(temp_sealed_buf, sealed_buf->sealed_buf_ptr[MOD2(sealed_buf->index)], len);
// Unseal current sealed buf
sgx_status_t ret = sgx_unseal_data((sgx_sealed_data_t *)temp_sealed_buf, plain_text, &plain_text_length, (uint8_t *)&unsealed_data, &unsealed_data_length);
if(ret == SGX_SUCCESS)
{
g_secret = unsealed_data;
sgx_thread_mutex_unlock(&g_mutex);
free_allocated_memory(temp_sealed_buf);
return 0;
}
else
{
sgx_thread_mutex_unlock(&g_mutex);
print("Failed to reinitialize the enclave.\n");
free_allocated_memory(temp_sealed_buf);
return -1;
}
}
int increase_and_seal_data(size_t tid, struct sealed_buf_t* sealed_buf)
{
uint32_t sealed_len = sizeof(sgx_sealed_data_t) + sizeof(g_secret);
// Check the sealed_buf length and check the outside pointers deeply
if(sealed_buf->sealed_buf_ptr[MOD2(sealed_buf->index)] == NULL ||
sealed_buf->sealed_buf_ptr[MOD2(sealed_buf->index + 1)] == NULL ||
!sgx_is_outside_enclave(sealed_buf->sealed_buf_ptr[MOD2(sealed_buf->index)], sealed_len) ||
!sgx_is_outside_enclave(sealed_buf->sealed_buf_ptr[MOD2(sealed_buf->index + 1)], sealed_len))
{
print("Incorrect input parameter(s).\n");
return -1;
}
char string_buf[BUFSIZ] = {'\0'};
uint32_t temp_secret = 0;
uint8_t *plain_text = NULL;
uint32_t plain_text_length = 0;
uint8_t *temp_sealed_buf = (uint8_t *)malloc(sealed_len);
if(temp_sealed_buf == NULL)
{
print("Out of memory.\n");
return -1;
}
memset(temp_sealed_buf, 0, sealed_len);
sgx_thread_mutex_lock(&g_mutex);
// Increase and seal the secret data
temp_secret = ++g_secret;
sgx_status_t ret = sgx_seal_data(plain_text_length, plain_text, sizeof(g_secret), (uint8_t *)&g_secret, sealed_len, (sgx_sealed_data_t *)temp_sealed_buf);
if(ret != SGX_SUCCESS)
{
sgx_thread_mutex_unlock(&g_mutex);
print("Failed to seal data\n");
free_allocated_memory(temp_sealed_buf);
return -1;
}
// Backup the sealed data to outside buffer
memcpy(sealed_buf->sealed_buf_ptr[MOD2(sealed_buf->index + 1)], temp_sealed_buf, sealed_len);
sealed_buf->index++;
sgx_thread_mutex_unlock(&g_mutex);
free_allocated_memory(temp_sealed_buf);
// Ocall to print the unsealed secret data outside.
// In theory, the secret data(s) SHOULD NOT be transferred outside the enclave as clear text(s).
// So please DO NOT print any secret outside. Here printing the secret data to outside is only for demo.
snprintf(string_buf, BUFSIZ, "Thread %#x>: %u\n", (unsigned int)tid, (unsigned int)temp_secret);
print(string_buf);
return 0;
}