corda/sdk/sample_libcrypto/sample_libcrypto.cpp
zhaohuidu 85947caa12 Upgrade to Linux 1.6 gold release
switch code to linux 1.6 opensource gold release
2016-09-19 14:55:22 +08:00

935 lines
32 KiB
C++

/*
* Copyright (C) 2011-2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* Do NOT use this library in your actual product.
* The purpose of this sample library is to aid the debugging of a
* remote attestation service.
* To achieve that goal, the sample remote attestation application
* will use this sample library to generate reproducible messages.
* If you have still not decided on whether you should use this library in a
* released product, please refer to the implementation of __do_get_rand32.
**/
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include "ippcp.h"
#include "sgx_memset_s.h"
#include "se_memcpy.h"
#include "sample_libcrypto.h"
#include <errno.h>
#ifdef __linux__
/*
* __memset_vp is a volatile pointer to a function.
* It is initialised to point to memset, and should never be changed.
*/
static void * (* const volatile __memset_vp)(void *, int, size_t)
= (memset);
#undef memset_s /* in case it was defined as a macro */
extern "C" int memset_s(void *s, size_t smax, int c, size_t n)
{
int err = 0;
if (s == NULL) {
err = EINVAL;
goto out;
}
if (n > smax) {
err = EOVERFLOW;
n = smax;
}
/* Calling through a volatile pointer should never be optimised away. */
(*__memset_vp)(s, c, n);
out:
if (err == 0)
return 0;
else {
errno = err;
/* XXX call runtime-constraint handler */
return err;
}
}
#endif
#ifndef ERROR_BREAK
#define ERROR_BREAK(x) if(x){break;}
#endif
#ifndef SAFE_FREE
#define SAFE_FREE(ptr) {if (NULL != (ptr)) {free(ptr); (ptr) = NULL;}}
#endif
#ifndef ROUND_TO
#define ROUND_TO(x, align) (((x) + (align-1)) & ~(align-1))
#endif
#ifndef UNUSED
#define UNUSED(val) (void)(val)
#endif
static uint32_t seed = (uint32_t)(9);
// We are using this very non-random definition for reproducibility / debugging purposes.
static inline sample_status_t __do_get_rand32(uint32_t* rand_num)
{
*rand_num = seed;
return SAMPLE_SUCCESS;
}
static inline IppStatus check_copy_size(size_t target_size, size_t source_size)
{
if(target_size < source_size)
return ippStsSizeErr;
return ippStsNoErr;
}
/* The function should generate a random number properly, and the pseudo-rand
implementation is only for demo purpose. */
sample_status_t sample_read_rand(unsigned char *rand, size_t length_in_bytes)
{
// check parameters
if(!rand || !length_in_bytes)
{
return SAMPLE_ERROR_INVALID_PARAMETER;
}
// loop to rdrand
while(length_in_bytes > 0)
{
uint32_t rand_num = 0;
sample_status_t status = __do_get_rand32(&rand_num);
if(status != SAMPLE_SUCCESS)
{
return status;
}
size_t size = (length_in_bytes < sizeof(rand_num))
? length_in_bytes : sizeof(rand_num);
if(memcpy_s(rand, size, &rand_num, size))
{
return status;
}
rand += size;
length_in_bytes -= size;
}
return SAMPLE_SUCCESS;
}
static IppStatus sgx_ipp_newBN(const Ipp32u *p_data, int size_in_bytes, IppsBigNumState **p_new_BN)
{
IppsBigNumState *pBN=0;
int bn_size = 0;
if(p_new_BN == NULL || (size_in_bytes <= 0) || ((size_in_bytes % sizeof(Ipp32u)) != 0))
return ippStsBadArgErr;
// Get the size of the IppsBigNumState context in bytes
IppStatus error_code = ippsBigNumGetSize(size_in_bytes/(int)sizeof(Ipp32u), &bn_size);
if(error_code != ippStsNoErr)
{
*p_new_BN = 0;
return error_code;
}
pBN = (IppsBigNumState *) malloc(bn_size);
if(!pBN)
{
error_code = ippStsMemAllocErr;
*p_new_BN = 0;
return error_code;
}
// Initialize context and partition allocated buffer
error_code = ippsBigNumInit(size_in_bytes/(int)sizeof(Ipp32u), pBN);
if(error_code != ippStsNoErr)
{
free(pBN);
*p_new_BN = 0;
return error_code;
}
if(p_data)
{
error_code = ippsSet_BN(IppsBigNumPOS, size_in_bytes/(int)sizeof(Ipp32u), p_data, pBN);
if(error_code != ippStsNoErr)
{
*p_new_BN = 0;
free(pBN);
return error_code;
}
}
*p_new_BN = pBN;
return error_code;
}
static void sample_ipp_secure_free_BN(IppsBigNumState *pBN, int size_in_bytes)
{
if(pBN == NULL || size_in_bytes <= 0 || size_in_bytes/sizeof(Ipp32u) <= 0)
{
if(pBN)
{
free(pBN);
}
return;
}
int bn_size = 0;
// Get the size of the IppsBigNumState context in bytes
// Since we have checked the size_in_bytes before and the &bn_size is not NULL, ippsBigNumGetSize never returns failure
ippsBigNumGetSize(size_in_bytes/(int)sizeof(Ipp32u), &bn_size);
if (bn_size <= 0)
{
free(pBN);
return;
}
// Clear the buffer before free.
memset_s(pBN, bn_size, 0, bn_size);
free(pBN);
return;
}
IppStatus __STDCALL sample_ipp_DRNGen(Ipp32u* pRandBNU, int nBits, void* pCtx_unused)
{
sample_status_t sample_ret;
UNUSED(pCtx_unused);
if(0 != nBits%8)
{
// Must be byte aligned
return ippStsSizeErr;
}
if(!pRandBNU)
{
return ippStsNullPtrErr;
}
sample_ret = sample_read_rand((uint8_t*)pRandBNU, (uint32_t)nBits/8);
if(SAMPLE_SUCCESS != sample_ret)
{
return ippStsErr;
}
return ippStsNoErr;
}
/* Rijndael AES-GCM
* Parameters:
* Return: sample_status_t - SAMPLE_SUCCESS on success, error code otherwise.
* Inputs: sample_aes_gcm_128bit_key_t *p_key - Pointer to key used in encryption/decryption operation
* uint8_t *p_src - Pointer to input stream to be encrypted/decrypted
* uint32_t src_len - Length of input stream to be encrypted/decrypted
* uint8_t *p_iv - Pointer to initialization vector to use
* uint32_t iv_len - Length of initialization vector
* uint8_t *p_aad - Pointer to input stream of additional authentication data
* uint32_t aad_len - Length of additional authentication data stream
* sample_aes_gcm_128bit_tag_t *p_in_mac - Pointer to expected MAC in decryption process
* Output: uint8_t *p_dst - Pointer to cipher text. Size of buffer should be >= src_len.
* sample_aes_gcm_128bit_tag_t *p_out_mac - Pointer to MAC generated from encryption process
* NOTE: Wrapper is responsible for confirming decryption tag matches encryption tag */
sample_status_t sample_rijndael128GCM_encrypt(const sample_aes_gcm_128bit_key_t *p_key, const uint8_t *p_src, uint32_t src_len,
uint8_t *p_dst, const uint8_t *p_iv, uint32_t iv_len, const uint8_t *p_aad, uint32_t aad_len,
sample_aes_gcm_128bit_tag_t *p_out_mac)
{
IppStatus error_code = ippStsNoErr;
IppsAES_GCMState* pState = NULL;
int ippStateSize = 0;
if ((p_key == NULL) || ((src_len > 0) && (p_dst == NULL)) || ((src_len > 0) && (p_src == NULL))
|| (p_out_mac == NULL) || (iv_len != SAMPLE_AESGCM_IV_SIZE) || ((aad_len > 0) && (p_aad == NULL))
|| (p_iv == NULL) || ((p_src == NULL) && (p_aad == NULL)))
{
return SAMPLE_ERROR_INVALID_PARAMETER;
}
error_code = ippsAES_GCMGetSize(&ippStateSize);
if (error_code != ippStsNoErr)
{
return SAMPLE_ERROR_UNEXPECTED;
}
pState = (IppsAES_GCMState*)malloc(ippStateSize);
if(pState == NULL)
{
return SAMPLE_ERROR_OUT_OF_MEMORY;
}
error_code = ippsAES_GCMInit((const Ipp8u *)p_key, SAMPLE_AESGCM_KEY_SIZE, pState, ippStateSize);
if (error_code != ippStsNoErr)
{
// Clear temp State before free.
memset_s(pState, ippStateSize, 0, ippStateSize);
free(pState);
switch (error_code)
{
case ippStsMemAllocErr: return SAMPLE_ERROR_OUT_OF_MEMORY;
case ippStsNullPtrErr:
case ippStsLengthErr: return SAMPLE_ERROR_INVALID_PARAMETER;
default: return SAMPLE_ERROR_UNEXPECTED;
}
}
error_code = ippsAES_GCMStart(p_iv, SAMPLE_AESGCM_IV_SIZE, p_aad, aad_len, pState);
if (error_code != ippStsNoErr)
{
// Clear temp State before free.
memset_s(pState, ippStateSize, 0, ippStateSize);
free(pState);
switch (error_code)
{
case ippStsNullPtrErr:
case ippStsLengthErr: return SAMPLE_ERROR_INVALID_PARAMETER;
default: return SAMPLE_ERROR_UNEXPECTED;
}
}
if (src_len > 0) {
error_code = ippsAES_GCMEncrypt(p_src, p_dst, src_len, pState);
if (error_code != ippStsNoErr)
{
// Clear temp State before free.
memset_s(pState, ippStateSize, 0, ippStateSize);
free(pState);
switch (error_code)
{
case ippStsNullPtrErr: return SAMPLE_ERROR_INVALID_PARAMETER;
default: return SAMPLE_ERROR_UNEXPECTED;
}
}
}
error_code = ippsAES_GCMGetTag((Ipp8u *)p_out_mac, SAMPLE_AESGCM_MAC_SIZE, pState);
if (error_code != ippStsNoErr)
{
// Clear temp State before free.
memset_s(pState, ippStateSize, 0, ippStateSize);
free(pState);
switch (error_code)
{
case ippStsNullPtrErr:
case ippStsLengthErr: return SAMPLE_ERROR_INVALID_PARAMETER;
default: return SAMPLE_ERROR_UNEXPECTED;
}
}
// Clear temp State before free.
memset_s(pState, ippStateSize, 0, ippStateSize);
free(pState);
return SAMPLE_SUCCESS;
}
/* Message Authentication - Rijndael 128 CMAC
* Parameters:
* Return: sample_status_t - SAMPLE_SUCCESS on success, error code otherwise.
* Inputs: sample_cmac_128bit_key_t *p_key - Pointer to key used in encryption/decryption operation
* uint8_t *p_src - Pointer to input stream to be MACed
* uint32_t src_len - Length of input stream to be MACed
* Output: sample_cmac_gcm_128bit_tag_t *p_mac - Pointer to resultant MAC */
sample_status_t sample_rijndael128_cmac_msg(const sample_cmac_128bit_key_t *p_key, const uint8_t *p_src,
uint32_t src_len, sample_cmac_128bit_tag_t *p_mac)
{
IppsAES_CMACState* pState = NULL;
int ippStateSize = 0;
IppStatus error_code = ippStsNoErr;
if ((p_key == NULL) || (p_src == NULL) || (p_mac == NULL))
{
return SAMPLE_ERROR_INVALID_PARAMETER;
}
error_code = ippsAES_CMACGetSize(&ippStateSize);
if (error_code != ippStsNoErr)
{
return SAMPLE_ERROR_UNEXPECTED;
}
pState = (IppsAES_CMACState*)malloc(ippStateSize);
if(pState == NULL)
{
return SAMPLE_ERROR_OUT_OF_MEMORY;
}
error_code = ippsAES_CMACInit((const Ipp8u *)p_key, SAMPLE_CMAC_KEY_SIZE, pState, ippStateSize);
if (error_code != ippStsNoErr)
{
// Clear temp State before free.
memset_s(pState, ippStateSize, 0, ippStateSize);
free(pState);
switch (error_code)
{
case ippStsMemAllocErr: return SAMPLE_ERROR_OUT_OF_MEMORY;
case ippStsNullPtrErr:
case ippStsLengthErr: return SAMPLE_ERROR_INVALID_PARAMETER;
default: return SAMPLE_ERROR_UNEXPECTED;
}
}
error_code = ippsAES_CMACUpdate((const Ipp8u *)p_src, src_len, pState);
if (error_code != ippStsNoErr)
{
// Clear temp State before free.
memset_s(pState, ippStateSize, 0, ippStateSize);
free(pState);
switch (error_code)
{
case ippStsNullPtrErr:
case ippStsLengthErr: return SAMPLE_ERROR_INVALID_PARAMETER;
default: return SAMPLE_ERROR_UNEXPECTED;
}
}
error_code = ippsAES_CMACFinal((Ipp8u *)p_mac, SAMPLE_CMAC_MAC_SIZE, pState);
if (error_code != ippStsNoErr)
{
// Clear temp State before free.
memset_s(pState, ippStateSize, 0, ippStateSize);
free(pState);
switch (error_code)
{
case ippStsNullPtrErr:
case ippStsLengthErr: return SAMPLE_ERROR_INVALID_PARAMETER;
default: return SAMPLE_ERROR_UNEXPECTED;
}
}
// Clear temp State before free.
memset_s(pState, ippStateSize, 0, ippStateSize);
free(pState);
return SAMPLE_SUCCESS;
}
extern "C" int some_function()
{
return 1234;
}
/*
* Elliptic Curve Crytpography - Based on GF(p), 256 bit
*/
/* Allocates and initializes ecc context
* Parameters:
* Return: sample_status_t - SAMPLE_SUCCESS on success, error code otherwise.
* Output: sample_ecc_state_handle_t ecc_handle - Handle to ECC crypto system */
sample_status_t sample_ecc256_open_context(sample_ecc_state_handle_t* ecc_handle)
{
IppStatus ipp_ret = ippStsNoErr;
IppsECCPState* p_ecc_state = NULL;
// default use 256r1 parameter
int ctx_size = 0;
if (ecc_handle == NULL)
return SAMPLE_ERROR_INVALID_PARAMETER;
ipp_ret = ippsECCPGetSize(256, &ctx_size);
if (ipp_ret != ippStsNoErr)
return SAMPLE_ERROR_UNEXPECTED;
p_ecc_state = (IppsECCPState*)(malloc(ctx_size));
if (p_ecc_state == NULL)
return SAMPLE_ERROR_OUT_OF_MEMORY;
ipp_ret = ippsECCPInit(256, p_ecc_state);
if (ipp_ret != ippStsNoErr)
{
SAFE_FREE(p_ecc_state);
*ecc_handle = NULL;
return SAMPLE_ERROR_UNEXPECTED;
}
ipp_ret = ippsECCPSetStd(IppECCPStd256r1, p_ecc_state);
if (ipp_ret != ippStsNoErr)
{
SAFE_FREE(p_ecc_state);
*ecc_handle = NULL;
return SAMPLE_ERROR_UNEXPECTED;
}
*ecc_handle = p_ecc_state;
return SAMPLE_SUCCESS;
}
/* Cleans up ecc context
* Parameters:
* Return: sample_status_t - SAMPLE_SUCCESS on success, error code otherwise.
* Output: sample_ecc_state_handle_t ecc_handle - Handle to ECC crypto system */
sample_status_t sample_ecc256_close_context(sample_ecc_state_handle_t ecc_handle)
{
if (ecc_handle == NULL)
{
return SAMPLE_ERROR_INVALID_PARAMETER;
}
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
int ctx_size = 0;
IppStatus ipp_ret = ippsECCPGetSize(256, &ctx_size);
if (ipp_ret != ippStsNoErr)
{
free(p_ecc_state);
return SAMPLE_SUCCESS;
}
memset_s(p_ecc_state, ctx_size, 0, ctx_size);
free(p_ecc_state);
return SAMPLE_SUCCESS;
}
/* Populates private/public key pair - caller code allocates memory
* Parameters:
* Return: sample_status_t - SAMPLE_SUCCESS on success, error code otherwise.
* Inputs: sample_ecc_state_handle_t ecc_handle - Handle to ECC crypto system
* Outputs: sample_ec256_private_t *p_private - Pointer to the private key
* sample_ec256_public_t *p_public - Pointer to the public key */
sample_status_t sample_ecc256_create_key_pair(sample_ec256_private_t *p_private,
sample_ec256_public_t *p_public,
sample_ecc_state_handle_t ecc_handle)
{
if ((ecc_handle == NULL) || (p_private == NULL) || (p_public == NULL))
{
return SAMPLE_ERROR_INVALID_PARAMETER;
}
IppsBigNumState* dh_priv_BN = NULL;
IppsECCPPointState* point_pub = NULL;
IppsBigNumState* pub_gx = NULL;
IppsBigNumState* pub_gy = NULL;
IppStatus ipp_ret = ippStsNoErr;
int ecPointSize = 0;
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
do
{
//init eccp point
ipp_ret = ippsECCPPointGetSize(256, &ecPointSize);
ERROR_BREAK(ipp_ret);
point_pub = (IppsECCPPointState*)( malloc(ecPointSize) );
if(!point_pub)
{
ipp_ret = ippStsNoMemErr;
break;
}
ipp_ret = ippsECCPPointInit(256, point_pub);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, SAMPLE_ECP256_KEY_SIZE, &dh_priv_BN);
ERROR_BREAK(ipp_ret);
// Use the true random number (DRNG)
ipp_ret = ippsECCPGenKeyPair(dh_priv_BN, point_pub, p_ecc_state, (IppBitSupplier)sample_ipp_DRNGen, NULL);
ERROR_BREAK(ipp_ret);
//convert point_result to oct string
ipp_ret = sgx_ipp_newBN(NULL, SAMPLE_ECP256_KEY_SIZE, &pub_gx);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, SAMPLE_ECP256_KEY_SIZE, &pub_gy);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPGetPoint(pub_gx, pub_gy, point_pub, p_ecc_state);
ERROR_BREAK(ipp_ret);
IppsBigNumSGN sgn = IppsBigNumPOS;
Ipp32u *pdata = NULL;
// ippsRef_BN is in bits not bytes (versus old ippsGet_BN)
int length = 0;
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, pub_gx);
ERROR_BREAK(ipp_ret);
memset(p_public->gx, 0, sizeof(p_public->gx));
ipp_ret = check_copy_size(sizeof(p_public->gx), ROUND_TO(length, 8)/8);
ERROR_BREAK(ipp_ret);
memcpy(p_public->gx, pdata, ROUND_TO(length, 8)/8);
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, pub_gy);
ERROR_BREAK(ipp_ret);
memset(p_public->gy, 0, sizeof(p_public->gy));
ipp_ret = check_copy_size(sizeof(p_public->gy), ROUND_TO(length, 8)/8);
ERROR_BREAK(ipp_ret);
memcpy(p_public->gy, pdata, ROUND_TO(length, 8)/8);
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, dh_priv_BN);
ERROR_BREAK(ipp_ret);
memset(p_private->r, 0, sizeof(p_private->r));
ipp_ret = check_copy_size(sizeof(p_private->r), ROUND_TO(length, 8)/8);
ERROR_BREAK(ipp_ret);
memcpy(p_private->r, pdata, ROUND_TO(length, 8)/8);
}while(0);
//Clear temp buffer before free.
if(point_pub) memset_s(point_pub, ecPointSize, 0, ecPointSize);
SAFE_FREE(point_pub);
sample_ipp_secure_free_BN(pub_gx, SAMPLE_ECP256_KEY_SIZE);
sample_ipp_secure_free_BN(pub_gy, SAMPLE_ECP256_KEY_SIZE);
sample_ipp_secure_free_BN(dh_priv_BN, SAMPLE_ECP256_KEY_SIZE);
switch (ipp_ret)
{
case ippStsNoErr: return SAMPLE_SUCCESS;
case ippStsNoMemErr:
case ippStsMemAllocErr: return SAMPLE_ERROR_OUT_OF_MEMORY;
case ippStsNullPtrErr:
case ippStsLengthErr:
case ippStsOutOfRangeErr:
case ippStsSizeErr:
case ippStsBadArgErr: return SAMPLE_ERROR_INVALID_PARAMETER;
default: return SAMPLE_ERROR_UNEXPECTED;
}
}
/* Computes DH shared key based on private B key (local) and remote public Ga Key
* Parameters:
* Return: sample_status_t - SAMPLE_SUCCESS on success, error code otherwise.
* Inputs: sample_ecc_state_handle_t ecc_handle - Handle to ECC crypto system
* sample_ec256_private_t *p_private_b - Pointer to the local private key - LITTLE ENDIAN
* sample_ec256_public_t *p_public_ga - Pointer to the remote public key - LITTLE ENDIAN
* Output: sample_ec256_dh_shared_t *p_shared_key - Pointer to the shared DH key - LITTLE ENDIAN
*x-coordinate of (privKeyB - pubKeyA) */
sample_status_t sample_ecc256_compute_shared_dhkey(sample_ec256_private_t *p_private_b,
sample_ec256_public_t *p_public_ga,
sample_ec256_dh_shared_t *p_shared_key,
sample_ecc_state_handle_t ecc_handle)
{
if ((ecc_handle == NULL) || (p_private_b == NULL) || (p_public_ga == NULL) || (p_shared_key == NULL))
{
return SAMPLE_ERROR_INVALID_PARAMETER;
}
IppsBigNumState* BN_dh_privB = NULL;
IppsBigNumState* BN_dh_share = NULL;
IppsBigNumState* pubA_gx = NULL;
IppsBigNumState* pubA_gy = NULL;
IppsECCPPointState* point_pubA = NULL;
IppStatus ipp_ret = ippStsNoErr;
int ecPointSize = 0;
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
IppECResult ipp_result = ippECValid;
do
{
ipp_ret = sgx_ipp_newBN((Ipp32u*)p_private_b->r, sizeof(sample_ec256_private_t), &BN_dh_privB);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN((uint32_t*)p_public_ga->gx, sizeof(p_public_ga->gx), &pubA_gx);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN((uint32_t*)p_public_ga->gy, sizeof(p_public_ga->gy), &pubA_gy);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPPointGetSize(256, &ecPointSize);
ERROR_BREAK(ipp_ret);
point_pubA = (IppsECCPPointState*)( malloc(ecPointSize) );
if(!point_pubA)
{
ipp_ret = ippStsNoMemErr;
break;
}
ipp_ret = ippsECCPPointInit(256, point_pubA);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPSetPoint(pubA_gx, pubA_gy, point_pubA, p_ecc_state);
ERROR_BREAK(ipp_ret);
// Check to see if the point is a valid point on the Elliptic curve and is not infinity
ipp_ret = ippsECCPCheckPoint(point_pubA, &ipp_result, p_ecc_state);
if (ipp_result != ippECValid)
{
break;
}
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, sizeof(sample_ec256_dh_shared_t), &BN_dh_share);
ERROR_BREAK(ipp_ret);
/* This API generates shareA = x-coordinate of (privKeyB - pubKeyA) */
ipp_ret = ippsECCPSharedSecretDH(BN_dh_privB, point_pubA, BN_dh_share, p_ecc_state);
ERROR_BREAK(ipp_ret);
IppsBigNumSGN sgn = IppsBigNumPOS;
int length = 0;
Ipp32u * pdata = NULL;
ipp_ret = ippsRef_BN(&sgn, &length, &pdata, BN_dh_share);
ERROR_BREAK(ipp_ret);
memset(p_shared_key->s, 0, sizeof(p_shared_key->s));
ipp_ret = check_copy_size(sizeof(p_shared_key->s), ROUND_TO(length, 8)/8);
ERROR_BREAK(ipp_ret);
memcpy(p_shared_key->s, pdata, ROUND_TO(length, 8)/8);
}while(0);
// Clear temp buffer before free.
if(point_pubA)
memset_s(point_pubA, ecPointSize, 0, ecPointSize);
SAFE_FREE(point_pubA);
sample_ipp_secure_free_BN(pubA_gx, sizeof(p_public_ga->gx));
sample_ipp_secure_free_BN(pubA_gy, sizeof(p_public_ga->gy));
sample_ipp_secure_free_BN(BN_dh_privB, sizeof(sample_ec256_private_t));
sample_ipp_secure_free_BN(BN_dh_share, sizeof(sample_ec256_dh_shared_t));
if (ipp_result != ippECValid)
{
return SAMPLE_ERROR_INVALID_PARAMETER;
}
switch (ipp_ret)
{
case ippStsNoErr: return SAMPLE_SUCCESS;
case ippStsNoMemErr:
case ippStsMemAllocErr: return SAMPLE_ERROR_OUT_OF_MEMORY;
case ippStsNullPtrErr:
case ippStsLengthErr:
case ippStsOutOfRangeErr:
case ippStsSizeErr:
case ippStsBadArgErr: return SAMPLE_ERROR_INVALID_PARAMETER;
default: return SAMPLE_ERROR_UNEXPECTED;
}
}
const uint32_t sample_nistp256_r[] = {
0xFC632551, 0xF3B9CAC2, 0xA7179E84, 0xBCE6FAAD, 0xFFFFFFFF, 0xFFFFFFFF,
0x00000000, 0xFFFFFFFF};
#include <stdio.h>
/* Computes signature for data based on private key
* Parameters:
* Return: sample_status_t - SAMPLE_SUCCESS, SAMPLE_SUCCESS on success, error code otherwise.
* Inputs: sample_ecc_state_handle_t ecc_handle - Handle to ECC crypto system
* sample_ec256_private_t *p_private - Pointer to the private key - LITTLE ENDIAN
* sample_uint8_t *p_data - Pointer to the data to be signed
* uint32_t data_size - Size of the data to be signed
* Output: sample_ec256_signature_t *p_signature - Pointer to the signature - LITTLE ENDIAN */
sample_status_t sample_ecdsa_sign(const uint8_t *p_data,
uint32_t data_size,
sample_ec256_private_t *p_private,
sample_ec256_signature_t *p_signature,
sample_ecc_state_handle_t ecc_handle)
{
if ((ecc_handle == NULL) || (p_private == NULL) || (p_signature == NULL) || (p_data == NULL) || (data_size < 1))
{
return SAMPLE_ERROR_INVALID_PARAMETER;
}
IppStatus ipp_ret = ippStsNoErr;
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
IppsBigNumState* p_ecp_order = NULL;
IppsBigNumState* p_hash_bn = NULL;
IppsBigNumState* p_msg_bn = NULL;
IppsBigNumState* p_eph_priv_bn = NULL;
IppsECCPPointState* p_eph_pub = NULL;
IppsBigNumState* p_reg_priv_bn = NULL;
IppsBigNumState* p_signx_bn = NULL;
IppsBigNumState* p_signy_bn = NULL;
Ipp32u *p_sigx = NULL;
Ipp32u *p_sigy = NULL;
int ecp_size = 0;
const int order_size = sizeof(sample_nistp256_r);
uint32_t hash[8] = {0};
do
{
ipp_ret = sgx_ipp_newBN(sample_nistp256_r, order_size, &p_ecp_order);
ERROR_BREAK(ipp_ret);
// Prepare the message used to sign.
ipp_ret = ippsHashMessage(p_data, data_size, (Ipp8u*)hash, IPP_ALG_HASH_SHA256);
ERROR_BREAK(ipp_ret);
/* Byte swap in creation of Big Number from SHA256 hash output */
ipp_ret = sgx_ipp_newBN(NULL, sizeof(hash), &p_hash_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsSetOctString_BN((Ipp8u*)hash, sizeof(hash), p_hash_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, order_size, &p_msg_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsMod_BN(p_hash_bn, p_ecp_order, p_msg_bn);
ERROR_BREAK(ipp_ret);
// Get ephemeral key pair.
ipp_ret = sgx_ipp_newBN(NULL, order_size, &p_eph_priv_bn);
ERROR_BREAK(ipp_ret);
//init eccp point
ipp_ret = ippsECCPPointGetSize(256, &ecp_size);
ERROR_BREAK(ipp_ret);
p_eph_pub = (IppsECCPPointState*)(malloc(ecp_size));
if(!p_eph_pub)
{
ipp_ret = ippStsNoMemErr;
break;
}
ipp_ret = ippsECCPPointInit(256, p_eph_pub);
ERROR_BREAK(ipp_ret);
// generate ephemeral key pair for signing operation
ipp_ret = ippsECCPGenKeyPair(p_eph_priv_bn, p_eph_pub, p_ecc_state,
(IppBitSupplier)sample_ipp_DRNGen, NULL);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPSetKeyPair(p_eph_priv_bn, p_eph_pub, ippFalse, p_ecc_state);
ERROR_BREAK(ipp_ret);
// Set the regular private key.
ipp_ret = sgx_ipp_newBN((uint32_t *)p_private->r, sizeof(p_private->r),
&p_reg_priv_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, order_size, &p_signx_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, order_size, &p_signy_bn);
ERROR_BREAK(ipp_ret);
// Sign the message.
ipp_ret = ippsECCPSignDSA(p_msg_bn, p_reg_priv_bn, p_signx_bn, p_signy_bn,
p_ecc_state);
ERROR_BREAK(ipp_ret);
IppsBigNumSGN sign;
int length;
ipp_ret = ippsRef_BN(&sign, &length,(Ipp32u**) &p_sigx, p_signx_bn);
ERROR_BREAK(ipp_ret);
memset(p_signature->x, 0, sizeof(p_signature->x));
ipp_ret = check_copy_size(sizeof(p_signature->x), ROUND_TO(length, 8)/8);
ERROR_BREAK(ipp_ret);
memcpy(p_signature->x, p_sigx, ROUND_TO(length, 8)/8);
memset_s(p_sigx, sizeof(p_signature->x), 0, ROUND_TO(length, 8)/8);
ipp_ret = ippsRef_BN(&sign, &length,(Ipp32u**) &p_sigy, p_signy_bn);
ERROR_BREAK(ipp_ret);
memset(p_signature->y, 0, sizeof(p_signature->y));
ipp_ret = check_copy_size(sizeof(p_signature->y), ROUND_TO(length, 8)/8);
ERROR_BREAK(ipp_ret);
memcpy(p_signature->y, p_sigy, ROUND_TO(length, 8)/8);
memset_s(p_sigy, sizeof(p_signature->y), 0, ROUND_TO(length, 8)/8);
}while(0);
// Clear buffer before free.
if(p_eph_pub)
memset_s(p_eph_pub, ecp_size, 0, ecp_size);
SAFE_FREE(p_eph_pub);
sample_ipp_secure_free_BN(p_ecp_order, order_size);
sample_ipp_secure_free_BN(p_hash_bn, sizeof(hash));
sample_ipp_secure_free_BN(p_msg_bn, order_size);
sample_ipp_secure_free_BN(p_eph_priv_bn, order_size);
sample_ipp_secure_free_BN(p_reg_priv_bn, sizeof(p_private->r));
sample_ipp_secure_free_BN(p_signx_bn, order_size);
sample_ipp_secure_free_BN(p_signy_bn, order_size);
switch (ipp_ret)
{
case ippStsNoErr: return SAMPLE_SUCCESS;
case ippStsNoMemErr:
case ippStsMemAllocErr: return SAMPLE_ERROR_OUT_OF_MEMORY;
case ippStsNullPtrErr:
case ippStsLengthErr:
case ippStsOutOfRangeErr:
case ippStsSizeErr:
case ippStsBadArgErr: return SAMPLE_ERROR_INVALID_PARAMETER;
default: return SAMPLE_ERROR_UNEXPECTED;
}
}
/* Allocates and initializes sha256 state
* Parameters:
* Return: sample_status_t - SAMPLE_SUCCESS on success, error code otherwise.
* Output: sample_sha_state_handle_t sha_handle - Handle to the SHA256 state */
sample_status_t sample_sha256_init(sample_sha_state_handle_t* p_sha_handle)
{
IppStatus ipp_ret = ippStsNoErr;
IppsHashState* p_temp_state = NULL;
if (p_sha_handle == NULL)
return SAMPLE_ERROR_INVALID_PARAMETER;
int ctx_size = 0;
ipp_ret = ippsHashGetSize(&ctx_size);
if (ipp_ret != ippStsNoErr)
return SAMPLE_ERROR_UNEXPECTED;
p_temp_state = (IppsHashState*)(malloc(ctx_size));
if (p_temp_state == NULL)
return SAMPLE_ERROR_OUT_OF_MEMORY;
ipp_ret = ippsHashInit(p_temp_state, IPP_ALG_HASH_SHA256);
if (ipp_ret != ippStsNoErr)
{
SAFE_FREE(p_temp_state);
*p_sha_handle = NULL;
switch (ipp_ret)
{
case ippStsNullPtrErr:
case ippStsLengthErr: return SAMPLE_ERROR_INVALID_PARAMETER;
default: return SAMPLE_ERROR_UNEXPECTED;
}
}
*p_sha_handle = p_temp_state;
return SAMPLE_SUCCESS;
}
/* Updates sha256 has calculation based on the input message
* Parameters:
* Return: sample_status_t - SAMPLE_SUCCESS on success, error code otherwise.
* Input: sample_sha_state_handle_t sha_handle - Handle to the SHA256 state
* uint8_t *p_src - Pointer to the input stream to be hashed
* uint32_t src_len - Length of the input stream to be hashed */
sample_status_t sample_sha256_update(const uint8_t *p_src, uint32_t src_len, sample_sha_state_handle_t sha_handle)
{
if ((p_src == NULL) || (sha_handle == NULL))
{
return SAMPLE_ERROR_INVALID_PARAMETER;
}
IppStatus ipp_ret = ippStsNoErr;
ipp_ret = ippsHashUpdate(p_src, src_len, (IppsHashState*)sha_handle);
switch (ipp_ret)
{
case ippStsNoErr: return SAMPLE_SUCCESS;
case ippStsNullPtrErr:
case ippStsLengthErr: return SAMPLE_ERROR_INVALID_PARAMETER;
default: return SAMPLE_ERROR_UNEXPECTED;
}
}
/* Returns Hash calculation
* Parameters:
* Return: sample_status_t - SAMPLE_SUCCESS on success, error code otherwise.
* Input: sample_sha_state_handle_t sha_handle - Handle to the SHA256 state
* Output: sample_sha256_hash_t *p_hash - Resultant hash from operation */
sample_status_t sample_sha256_get_hash(sample_sha_state_handle_t sha_handle, sample_sha256_hash_t *p_hash)
{
if ((sha_handle == NULL) || (p_hash == NULL))
{
return SAMPLE_ERROR_INVALID_PARAMETER;
}
IppStatus ipp_ret = ippStsNoErr;
ipp_ret = ippsHashGetTag((Ipp8u*)p_hash, SAMPLE_SHA256_HASH_SIZE, (IppsHashState*)sha_handle);
switch (ipp_ret)
{
case ippStsNoErr: return SAMPLE_SUCCESS;
case ippStsNullPtrErr:
case ippStsLengthErr: return SAMPLE_ERROR_INVALID_PARAMETER;
default: return SAMPLE_ERROR_UNEXPECTED;
}
}
/* Cleans up sha state
* Parameters:
* Return: sample_status_t - SAMPLE_SUCCESS on success, error code otherwise.
* Input: sample_sha_state_handle_t sha_handle - Handle to the SHA256 state */
sample_status_t sample_sha256_close(sample_sha_state_handle_t sha_handle)
{
if (sha_handle == NULL)
{
return SAMPLE_ERROR_INVALID_PARAMETER;
}
SAFE_FREE(sha_handle);
return SAMPLE_SUCCESS;
}