corda/src/bootimage.cpp
Joel Dice fea92ed995 more work on tail recursion
We now create a unique thunk for each vtable position so as to avoid
relying on using the return address to determine what method is to be
compiled and invoked, since we will not have the correct return address
in the case of a tail call.  This required refactoring how executable
memory is allocated in order to keep AOT compilation working.  Also, we
must always use the same register to hold the class pointer when
compiling virtual calls, and ensure that the pointer stays there until
the call instruction is executed so we know where to find it in the
thunk.
2009-04-05 15:42:10 -06:00

411 lines
11 KiB
C++

/* Copyright (c) 2008-2009, Avian Contributors
Permission to use, copy, modify, and/or distribute this software
for any purpose with or without fee is hereby granted, provided
that the above copyright notice and this permission notice appear
in all copies.
There is NO WARRANTY for this software. See license.txt for
details. */
#include "bootimage.h"
#include "heapwalk.h"
#include "common.h"
#include "machine.h"
#include "util.h"
#include "assembler.h"
// since we aren't linking against libstdc++, we must implement this
// ourselves:
extern "C" void __cxa_pure_virtual(void) { abort(); }
using namespace vm;
namespace {
bool
endsWith(const char* suffix, const char* s, unsigned length)
{
unsigned suffixLength = strlen(suffix);
return length >= suffixLength
and memcmp(suffix, s + (length - suffixLength), suffixLength) == 0;
}
object
makeCodeImage(Thread* t, Zone* zone, BootImage* image, uint8_t* code,
unsigned capacity, uintptr_t* codeMap, const char* className,
const char* methodName, const char* methodSpec)
{
unsigned size = 0;
t->m->processor->initialize(t, image, code, &size, capacity);
object constants = 0;
PROTECT(t, constants);
object calls = 0;
PROTECT(t, calls);
DelayedPromise* addresses = 0;
for (Finder::Iterator it(t->m->finder); it.hasMore();) {
unsigned nameSize = 0;
const char* name = it.next(&nameSize);
if (endsWith(".class", name, nameSize)
and (className == 0 or strncmp(name, className, nameSize - 6) == 0))
{
// fprintf(stderr, "%.*s\n", nameSize - 6, name);
object c = resolveClass
(t, makeByteArray(t, "%.*s", nameSize - 6, name));
if (t->exception) return 0;
PROTECT(t, c);
if (classMethodTable(t, c)) {
for (unsigned i = 0; i < arrayLength(t, classMethodTable(t, c)); ++i) {
object method = arrayBody(t, classMethodTable(t, c), i);
if ((methodCode(t, method) or (methodFlags(t, method) & ACC_NATIVE))
and ((methodName == 0
or strcmp
(reinterpret_cast<char*>
(&byteArrayBody
(t, vm::methodName(t, method), 0)), methodName) == 0)
and (methodSpec == 0
or strcmp
(reinterpret_cast<char*>
(&byteArrayBody
(t, vm::methodSpec(t, method), 0)), methodSpec)
== 0)))
{
t->m->processor->compileMethod
(t, zone, &constants, &calls, &addresses, method);
}
}
}
}
}
for (; calls; calls = tripleThird(t, calls)) {
object method = tripleFirst(t, calls);
uintptr_t address;
if (methodFlags(t, method) & ACC_NATIVE) {
address = reinterpret_cast<uintptr_t>(code + image->nativeThunk);
} else {
address = methodCompiled(t, method);
}
static_cast<ListenPromise*>(pointerValue(t, tripleSecond(t, calls)))
->listener->resolve(address, 0);
}
for (; addresses; addresses = addresses->next) {
uint8_t* value = reinterpret_cast<uint8_t*>(addresses->basis->value());
assert(t, value >= code);
void* location;
bool flat = addresses->listener->resolve(0, &location);
uintptr_t offset = value - code;
if (flat) {
offset |= BootFlatConstant;
}
memcpy(location, &offset, BytesPerWord);
assert(t, reinterpret_cast<intptr_t>(location)
>= reinterpret_cast<intptr_t>(code));
markBit(codeMap, reinterpret_cast<intptr_t>(location)
- reinterpret_cast<intptr_t>(code));
}
image->codeSize = size;
return constants;
}
unsigned
objectSize(Thread* t, object o)
{
assert(t, not objectExtended(t, o));
return baseSize(t, o, objectClass(t, o));
}
void
visitRoots(Thread* t, BootImage* image, HeapWalker* w, object constants)
{
Machine* m = t->m;
for (HashMapIterator it(t, m->classMap); it.hasMore();) {
w->visitRoot(tripleSecond(t, it.next()));
}
image->loader = w->visitRoot(m->loader);
image->types = w->visitRoot(m->types);
m->processor->visitRoots(image, w);
for (; constants; constants = tripleThird(t, constants)) {
w->visitRoot(tripleFirst(t, constants));
}
}
HeapWalker*
makeHeapImage(Thread* t, BootImage* image, uintptr_t* heap, uintptr_t* map,
unsigned capacity, object constants)
{
class Visitor: public HeapVisitor {
public:
Visitor(Thread* t, uintptr_t* heap, uintptr_t* map, unsigned capacity):
t(t), currentObject(0), currentNumber(0), currentOffset(0), heap(heap),
map(map), position(0), capacity(capacity)
{ }
void visit(unsigned number) {
if (currentObject) {
unsigned offset = currentNumber - 1 + currentOffset;
unsigned mark = heap[offset] & (~PointerMask);
unsigned value = number | (mark << BootShift);
if (value) markBit(map, offset);
heap[offset] = value;
}
}
virtual void root() {
currentObject = 0;
}
virtual unsigned visitNew(object p) {
if (p) {
unsigned size = objectSize(t, p);
unsigned number;
if (currentObject
and (currentOffset * BytesPerWord) == ClassStaticTable)
{
FixedAllocator allocator
(t, reinterpret_cast<uint8_t*>(heap + position),
(capacity - position) * BytesPerWord);
unsigned totalInBytes;
uintptr_t* dst = static_cast<uintptr_t*>
(t->m->heap->allocateImmortalFixed
(&allocator, size, true, &totalInBytes));
memcpy(dst, p, size * BytesPerWord);
dst[0] |= FixedMark;
number = (dst - heap) + 1;
position += ceiling(totalInBytes, BytesPerWord);
} else {
assert(t, position + size < capacity);
memcpy(heap + position, p, size * BytesPerWord);
number = position + 1;
position += size;
}
visit(number);
return number;
} else {
return 0;
}
}
virtual void visitOld(object, unsigned number) {
visit(number);
}
virtual void push(object object, unsigned number, unsigned offset) {
currentObject = object;
currentNumber = number;
currentOffset = offset;
}
virtual void pop() {
currentObject = 0;
}
Thread* t;
object currentObject;
unsigned currentNumber;
unsigned currentOffset;
uintptr_t* heap;
uintptr_t* map;
unsigned position;
unsigned capacity;
} visitor(t, heap, map, capacity / BytesPerWord);
HeapWalker* w = makeHeapWalker(t, &visitor);
visitRoots(t, image, w, constants);
image->heapSize = visitor.position * BytesPerWord;
return w;
}
void
updateConstants(Thread* t, object constants, uint8_t* code, uintptr_t* codeMap,
HeapMap* heapTable)
{
for (; constants; constants = tripleThird(t, constants)) {
unsigned target = heapTable->find(tripleFirst(t, constants));
assert(t, target > 0);
for (Promise::Listener* pl = static_cast<ListenPromise*>
(pointerValue(t, tripleSecond(t, constants)))->listener;
pl; pl = pl->next)
{
void* location;
bool flat = pl->resolve(0, &location);
uintptr_t offset = target | BootHeapOffset;
if (flat) {
offset |= BootFlatConstant;
}
memcpy(location, &offset, BytesPerWord);
assert(t, reinterpret_cast<intptr_t>(location)
>= reinterpret_cast<intptr_t>(code));
markBit(codeMap, reinterpret_cast<intptr_t>(location)
- reinterpret_cast<intptr_t>(code));
}
}
}
unsigned
offset(object a, uintptr_t* b)
{
return reinterpret_cast<uintptr_t>(b) - reinterpret_cast<uintptr_t>(a);
}
void
writeBootImage(Thread* t, FILE* out, const char* className,
const char* methodName, const char* methodSpec)
{
Zone zone(t->m->system, t->m->heap, 64 * 1024);
BootImage image;
const unsigned CodeCapacity = 32 * 1024 * 1024;
uint8_t* code = static_cast<uint8_t*>(t->m->heap->allocate(CodeCapacity));
uintptr_t* codeMap = static_cast<uintptr_t*>
(t->m->heap->allocate(codeMapSize(CodeCapacity)));
memset(codeMap, 0, codeMapSize(CodeCapacity));
object constants = makeCodeImage
(t, &zone, &image, code, CodeCapacity, codeMap, className, methodName,
methodSpec);
if (t->exception) return;
PROTECT(t, constants);
const unsigned HeapCapacity = 32 * 1024 * 1024;
uintptr_t* heap = static_cast<uintptr_t*>
(t->m->heap->allocate(HeapCapacity));
uintptr_t* heapMap = static_cast<uintptr_t*>
(t->m->heap->allocate(heapMapSize(HeapCapacity)));
memset(heapMap, 0, heapMapSize(HeapCapacity));
collect(t, Heap::MajorCollection);
HeapWalker* heapWalker = makeHeapImage
(t, &image, heap, heapMap, HeapCapacity, constants);
updateConstants(t, constants, code, codeMap, heapWalker->map());
image.classCount = hashMapSize(t, t->m->classMap);
unsigned* classTable = static_cast<unsigned*>
(t->m->heap->allocate(image.classCount * sizeof(unsigned)));
{ unsigned i = 0;
for (HashMapIterator it(t, t->m->classMap); it.hasMore();) {
classTable[i++] = heapWalker->map()->find(tripleSecond(t, it.next()));
}
}
image.stringCount = hashMapSize(t, t->m->stringMap);
unsigned* stringTable = static_cast<unsigned*>
(t->m->heap->allocate(image.stringCount * sizeof(unsigned)));
{ unsigned i = 0;
for (HashMapIterator it(t, t->m->stringMap); it.hasMore();) {
stringTable[i++] = heapWalker->map()->find
(jreferenceTarget(t, tripleFirst(t, it.next())));
}
}
unsigned* callTable = t->m->processor->makeCallTable
(t, &image, heapWalker, code);
heapWalker->dispose();
image.magic = BootImage::Magic;
image.codeBase = reinterpret_cast<uintptr_t>(code);
fprintf(stderr, "class count %d string count %d call count %d\n"
"heap size %d code size %d\n",
image.classCount, image.stringCount, image.callCount, image.heapSize,
image.codeSize);
if (true) {
fwrite(&image, sizeof(BootImage), 1, out);
fwrite(classTable, image.classCount * sizeof(unsigned), 1, out);
fwrite(stringTable, image.stringCount * sizeof(unsigned), 1, out);
fwrite(callTable, image.callCount * sizeof(unsigned) * 2, 1, out);
unsigned offset = (image.classCount * sizeof(unsigned))
+ (image.stringCount * sizeof(unsigned))
+ (image.callCount * sizeof(unsigned) * 2);
while (offset % BytesPerWord) {
uint8_t c = 0;
fwrite(&c, 1, 1, out);
++ offset;
}
fwrite(heapMap, pad(heapMapSize(image.heapSize)), 1, out);
fwrite(heap, pad(image.heapSize), 1, out);
fwrite(codeMap, pad(codeMapSize(image.codeSize)), 1, out);
fwrite(code, pad(image.codeSize), 1, out);
}
}
} // namespace
int
main(int ac, const char** av)
{
if (ac < 2 or ac > 5) {
fprintf(stderr, "usage: %s <classpath> "
"[<class name> [<method name> [<method spec>]]]\n", av[0]);
return -1;
}
System* s = makeSystem(0);
Heap* h = makeHeap(s, 128 * 1024 * 1024);
Finder* f = makeFinder(s, av[1], 0);
Processor* p = makeProcessor(s, h);
Machine* m = new (h->allocate(sizeof(Machine))) Machine(s, h, f, p, 0, 0);
Thread* t = p->makeThread(m, 0, 0);
enter(t, Thread::ActiveState);
enter(t, Thread::IdleState);
writeBootImage
(t, stdout, (ac > 2 ? av[2] : 0), (ac > 3 ? av[3] : 0),
(ac > 4 ? av[4] : 0));
if (t->exception) {
printTrace(t, t->exception);
}
return 0;
}