corda/classpath/java/util/TreeSet.java
Joel Dice c0d178d5f1 implement ConcurrentHashMap and AtomicReferenceArray
This is the simplest possible ConcurrentHashMap I could come up with
that works and is actually concurrent in the way one would expect.
It's pretty unconventional, being based on a persistent red-black
tree, and not particularly memory-efficient or cache-friendly.  I
think this is a good place to start, though, and it should perform
reasonably well for most workloads.  Patches for a more efficient
implementation are welcome!

I also implemented AtomicReferenceArray, since I was using it in my
first, naive attempt to implement ConcurrentHashMap.

I had to do a bit of refactoring, including moving some non-standard
stuff from java.util.Collections to avian.Data so I could make it
available to code outside the java.util package, which is why I had to
modify several unrelated files.
2014-03-12 10:44:24 -06:00

215 lines
5.1 KiB
Java

/* Copyright (c) 2008-2013, Avian Contributors
Permission to use, copy, modify, and/or distribute this software
for any purpose with or without fee is hereby granted, provided
that the above copyright notice and this permission notice appear
in all copies.
There is NO WARRANTY for this software. See license.txt for
details. */
package java.util;
import avian.PersistentSet;
import avian.Cell;
public class TreeSet<T> extends AbstractSet<T> implements Collection<T> {
private PersistentSet<Cell<T>> set;
public TreeSet(final Comparator<T> comparator) {
set = new PersistentSet(new Comparator<Cell<T>>() {
public int compare(Cell<T> a, Cell<T> b) {
return comparator.compare(a.value, b.value);
}
});
}
public TreeSet() {
this(new Comparator<T>() {
public int compare(T a, T b) {
return ((Comparable) a).compareTo(b);
}
});
}
public TreeSet(Collection<? extends T> collection) {
this();
for (T item: collection) {
add(item);
}
}
public T first() {
if (isEmpty()) throw new NoSuchElementException();
return set.first().value().value;
}
public T last() {
if (isEmpty()) throw new NoSuchElementException();
return set.last().value().value;
}
public Iterator<T> iterator() {
return new MyIterator<T>(set.first());
}
public Iterator<T> descendingIterator() {
return new MyIterator<T>(set.last(), true);
}
public String toString() {
return avian.Data.toString(this);
}
public boolean add(T value) {
PersistentSet.Path<Cell<T>> p = set.find(new Cell(value, null));
if (p.fresh()) {
set = p.add();
return true;
}
return false;
}
T addAndReplace(T value) {
PersistentSet.Path<Cell<T>> p = set.find(new Cell(value, null));
if (p.fresh()) {
set = p.add();
return null;
} else {
T old = p.value().value;
set = p.replaceWith(new Cell(value, null));
return old;
}
}
T find(T value) {
PersistentSet.Path<Cell<T>> p = set.find(new Cell(value, null));
return p.fresh() ? null : p.value().value;
}
T removeAndReturn(T value) {
Cell<T> cell = removeCell(value);
return cell == null ? null : cell.value;
}
private Cell<T> removeCell(Object value) {
PersistentSet.Path<Cell<T>> p = set.find(new Cell(value, null));
if (p.fresh()) {
return null;
} else {
Cell<T> old = p.value();
if (p.value().next != null) {
set = p.replaceWith(p.value().next);
} else {
set = p.remove();
}
return old;
}
}
public boolean remove(Object value) {
return removeCell(value) != null;
}
public int size() {
return set.size();
}
public boolean isEmpty() {
return set.size() == 0;
}
public boolean contains(Object value) {
return !set.find(new Cell(value, null)).fresh();
}
public void clear() {
set = new PersistentSet(set.comparator());
}
private class MyIterator<T> implements java.util.Iterator<T> {
private PersistentSet.Path<Cell<T>> path;
private PersistentSet.Path<Cell<T>> nextPath;
private Cell<T> cell;
private Cell<T> prevCell;
private Cell<T> prevPrevCell;
private boolean canRemove = false;
private final boolean reversed;
private MyIterator(PersistentSet.Path<Cell<T>> path) {
this(path, false);
}
private MyIterator(PersistentSet.Path<Cell<T>> path, boolean reversed) {
this.path = path;
this.reversed = reversed;
if (path != null) {
cell = path.value();
nextPath = nextPath();
}
}
private MyIterator(MyIterator<T> start) {
path = start.path;
nextPath = start.nextPath;
cell = start.cell;
prevCell = start.prevCell;
prevPrevCell = start.prevPrevCell;
canRemove = start.canRemove;
reversed = start.reversed;
}
public boolean hasNext() {
return cell != null || nextPath != null;
}
public T next() {
if (cell == null) {
path = nextPath;
nextPath = nextPath();
cell = path.value();
}
prevPrevCell = prevCell;
prevCell = cell;
cell = cell.next;
canRemove = true;
return prevCell.value;
}
private PersistentSet.Path nextPath() {
return reversed ? path.predecessor() : path.successor();
}
public void remove() {
if (! canRemove) throw new IllegalStateException();
if (prevPrevCell != null && prevPrevCell.next == prevCell) {
// cell to remove is not the first in the list.
prevPrevCell.next = prevCell.next;
prevCell = prevPrevCell;
} else if (prevCell.next == cell && cell != null) {
// cell to remove is the first in the list, but not the last.
set = (PersistentSet) path.replaceWith(cell);
prevCell = null;
} else {
// cell is alone in the list.
set = (PersistentSet) path.remove();
path = nextPath;
if (path != null) {
prevCell = null;
cell = path.value();
path = (PersistentSet.Path) set.find((Cell) cell);
nextPath = nextPath();
}
}
canRemove = false;
}
}
}