corda/src/x86.cpp
2008-06-12 11:23:20 -06:00

2189 lines
51 KiB
C++

#include "assembler.h"
#include "vector.h"
using namespace vm;
#define INDEX1(a, b) ((a) + (UnaryOperationCount * (b)))
#define CAST1(x) reinterpret_cast<UnaryOperationType>(x)
#define INDEX2(a, b, c) \
((a) \
+ (BinaryOperationCount * (b)) \
+ (BinaryOperationCount * OperandTypeCount * (c)))
#define CAST2(x) reinterpret_cast<BinaryOperationType>(x)
namespace {
enum {
rax = 0,
rcx = 1,
rdx = 2,
rbx = 3,
rsp = 4,
rbp = 5,
rsi = 6,
rdi = 7,
r8 = 8,
r9 = 9,
r10 = 10,
r11 = 11,
r12 = 12,
r13 = 13,
r14 = 14,
r15 = 15,
};
inline bool
isInt8(intptr_t v)
{
return v == static_cast<int8_t>(v);
}
inline bool
isInt32(intptr_t v)
{
return v == static_cast<int32_t>(v);
}
class Task;
class Context {
public:
Context(System* s, Allocator* a, Zone* zone):
s(s), zone(zone), client(0), code(s, a, 1024), tasks(0), result(0)
{ }
System* s;
Zone* zone;
Assembler::Client* client;
Vector code;
Task* tasks;
uint8_t* result;
};
inline void NO_RETURN
abort(Context* c)
{
abort(c->s);
}
#ifndef NDEBUG
inline void
assert(Context* c, bool v)
{
assert(c->s, v);
}
#endif // not NDEBUG
inline void
expect(Context* c, bool v)
{
expect(c->s, v);
}
ResolvedPromise*
resolved(Context* c, int64_t value)
{
return new (c->zone->allocate(sizeof(ResolvedPromise)))
ResolvedPromise(value);
}
class CodePromise: public Promise {
public:
CodePromise(Context* c, unsigned offset): c(c), offset(offset) { }
virtual int64_t value() {
if (resolved()) {
return reinterpret_cast<intptr_t>(c->result + offset);
}
abort(c);
}
virtual bool resolved() {
return c->result != 0;
}
Context* c;
unsigned offset;
};
CodePromise*
codePromise(Context* c, unsigned offset)
{
return new (c->zone->allocate(sizeof(CodePromise))) CodePromise(c, offset);
}
class Task {
public:
Task(Task* next): next(next) { }
virtual ~Task() { }
virtual void run(Context* c) = 0;
Task* next;
};
class OffsetTask: public Task {
public:
OffsetTask(Task* next, Promise* promise, unsigned instructionOffset,
unsigned instructionSize):
Task(next),
promise(promise),
instructionOffset(instructionOffset),
instructionSize(instructionSize)
{ }
virtual void run(Context* c) {
uint8_t* instruction = c->result + instructionOffset;
intptr_t v = reinterpret_cast<uint8_t*>(promise->value())
- instruction - instructionSize;
expect(c, isInt32(v));
int32_t v4 = v;
memcpy(instruction + instructionSize - 4, &v4, 4);
}
Promise* promise;
unsigned instructionOffset;
unsigned instructionSize;
};
void
appendOffsetTask(Context* c, Promise* promise, int instructionOffset,
unsigned instructionSize)
{
c->tasks = new (c->zone->allocate(sizeof(OffsetTask))) OffsetTask
(c->tasks, promise, instructionOffset, instructionSize);
}
class ImmediateTask: public Task {
public:
ImmediateTask(Task* next, Promise* promise, unsigned offset):
Task(next),
promise(promise),
offset(offset)
{ }
virtual void run(Context* c) {
intptr_t v = promise->value();
memcpy(c->result + offset, &v, BytesPerWord);
}
Promise* promise;
unsigned offset;
};
void
appendImmediateTask(Context* c, Promise* promise, unsigned offset)
{
c->tasks = new (c->zone->allocate(sizeof(ImmediateTask))) ImmediateTask
(c->tasks, promise, offset);
}
void
encode(Context* c, uint8_t* instruction, unsigned length, int a, int b,
int32_t displacement, int index, unsigned scale)
{
c->code.append(instruction, length);
uint8_t width;
if (displacement == 0 and b != rbp) {
width = 0;
} else if (isInt8(displacement)) {
width = 0x40;
} else {
width = 0x80;
}
if (index == -1) {
c->code.append(width | (a << 3) | b);
if (b == rsp) {
c->code.append(0x24);
}
} else {
assert(c, b != rsp);
c->code.append(width | (a << 3) | 4);
c->code.append((log(scale) << 6) | (index << 3) | b);
}
if (displacement == 0 and b != rbp) {
// do nothing
} else if (isInt8(displacement)) {
c->code.append(displacement);
} else {
c->code.append4(displacement);
}
}
void
rex(Context* c, uint8_t mask, int r)
{
if (BytesPerWord == 8) {
c->code.append(mask | ((r & 8) >> 3));
}
}
void
rex(Context* c)
{
rex(c, 0x48, rax);
}
void
encode(Context* c, uint8_t instruction, int a, Assembler::Memory* b, bool rex)
{
if (rex) {
::rex(c);
}
encode(c, &instruction, 1, a, b->base, b->offset, b->index, b->scale);
}
void
encode2(Context* c, uint16_t instruction, int a, Assembler::Memory* b,
bool rex)
{
if (rex) {
::rex(c);
}
uint8_t i[2] = { instruction >> 8, instruction & 0xff };
encode(c, i, 2, a, b->base, b->offset, b->index, b->scale);
}
typedef void (*OperationType)(Context*);
OperationType
Operations[OperationCount];
typedef void (*UnaryOperationType)(Context*, unsigned, Assembler::Operand*);
UnaryOperationType
UnaryOperations[UnaryOperationCount * OperandTypeCount];
typedef void (*BinaryOperationType)
(Context*, unsigned, Assembler::Operand*, Assembler::Operand*);
BinaryOperationType
BinaryOperations[BinaryOperationCount * OperandTypeCount * OperandTypeCount];
void
return_(Context* c)
{
c->code.append(0xc3);
}
void
unconditional(Context* c, unsigned jump, Assembler::Constant* a)
{
appendOffsetTask(c, a->value, c->code.length(), 5);
c->code.append(jump);
c->code.append4(0);
}
void
conditional(Context* c, unsigned condition, Assembler::Constant* a)
{
appendOffsetTask(c, a->value, c->code.length(), 6);
c->code.append(0x0f);
c->code.append(condition);
c->code.append4(0);
}
void
moveCR(Context*, unsigned, Assembler::Constant*, Assembler::Register*);
void
callR(Context*, unsigned, Assembler::Register*);
void
callC(Context* c, unsigned size UNUSED, Assembler::Constant* a)
{
assert(c, size == BytesPerWord);
unconditional(c, 0xe8, a);
}
void
longCallC(Context* c, unsigned size, Assembler::Constant* a)
{
assert(c, size == BytesPerWord);
if (BytesPerWord == 8) {
Assembler::Register r(r10);
moveCR(c, size, a, &r);
callR(c, size, &r);
} else {
callC(c, size, a);
}
}
void
alignedCallC(Context* c, unsigned size, Assembler::Constant* a)
{
while ((c->code.length() + 1) % 4) {
c->code.append(0x90);
}
callC(c, size, a);
}
void
callR(Context* c, unsigned size UNUSED, Assembler::Register* a)
{
assert(c, size == BytesPerWord);
if (a->low & 8) rex(c, 0x40, a->low);
c->code.append(0xff);
c->code.append(0xd0 | (a->low & 7));
}
void
callM(Context* c, unsigned size UNUSED, Assembler::Memory* a)
{
assert(c, size == BytesPerWord);
encode(c, 0xff, 2, a, false);
}
void
jumpR(Context* c, unsigned size UNUSED, Assembler::Register* a)
{
assert(c, size == BytesPerWord);
if (a->low & 8) rex(c, 0x40, a->low);
c->code.append(0xff);
c->code.append(0xe0 | (a->low & 7));
}
void
jumpC(Context* c, unsigned size UNUSED, Assembler::Constant* a)
{
assert(c, size == BytesPerWord);
unconditional(c, 0xe9, a);
}
void
longJumpC(Context* c, unsigned size, Assembler::Constant* a)
{
assert(c, size == BytesPerWord);
if (BytesPerWord == 8) {
Assembler::Register r(r10);
moveCR(c, size, a, &r);
jumpR(c, size, &r);
} else {
jumpC(c, size, a);
}
}
void
jumpM(Context* c, unsigned size UNUSED, Assembler::Memory* a)
{
assert(c, size == BytesPerWord);
encode(c, 0xff, 4, a, false);
}
void
jumpIfEqualC(Context* c, unsigned size UNUSED, Assembler::Constant* a)
{
assert(c, size == BytesPerWord);
conditional(c, 0x84, a);
}
void
jumpIfNotEqualC(Context* c, unsigned size UNUSED, Assembler::Constant* a)
{
assert(c, size == BytesPerWord);
conditional(c, 0x85, a);
}
void
jumpIfGreaterC(Context* c, unsigned size UNUSED, Assembler::Constant* a)
{
assert(c, size == BytesPerWord);
conditional(c, 0x8f, a);
}
void
jumpIfGreaterOrEqualC(Context* c, unsigned size UNUSED, Assembler::Constant* a)
{
assert(c, size == BytesPerWord);
conditional(c, 0x8d, a);
}
void
jumpIfLessC(Context* c, unsigned size UNUSED, Assembler::Constant* a)
{
assert(c, size == BytesPerWord);
conditional(c, 0x8c, a);
}
void
jumpIfLessOrEqualC(Context* c, unsigned size UNUSED, Assembler::Constant* a)
{
assert(c, size == BytesPerWord);
conditional(c, 0x8e, a);
}
void
pushR(Context*, unsigned, Assembler::Register*);
void
pushC(Context* c, unsigned size, Assembler::Constant* a)
{
if (BytesPerWord == 4 and size == 8) {
int64_t v = a->value->value();
ResolvedPromise low(v & 0xFFFFFFFF);
Assembler::Constant al(&low);
ResolvedPromise high((v >> 32) & 0xFFFFFFFF);
Assembler::Constant ah(&high);
pushC(c, 4, &ah);
pushC(c, 4, &al);
} else {
if (a->value->resolved()) {
int64_t v = a->value->value();
if (isInt8(v)) {
c->code.append(0x6a);
c->code.append(v);
} else if (isInt32(v)) {
c->code.append(0x68);
c->code.append4(v);
} else {
Assembler::Register tmp(c->client->acquireTemporary());
moveCR(c, size, a, &tmp);
pushR(c, size, &tmp);
c->client->releaseTemporary(tmp.low);
}
} else {
if (BytesPerWord == 4) {
c->code.append(0x68);
appendImmediateTask(c, a->value, c->code.length());
c->code.appendAddress(static_cast<uintptr_t>(0));
} else {
Assembler::Register tmp(c->client->acquireTemporary());
moveCR(c, size, a, &tmp);
pushR(c, size, &tmp);
c->client->releaseTemporary(tmp.low);
}
}
}
}
void
moveAR(Context*, unsigned, Assembler::Address*, Assembler::Register* b);
void
pushA(Context* c, unsigned size, Assembler::Address* a)
{
assert(c, BytesPerWord == 8 or size == 4); // todo
Assembler::Register tmp(c->client->acquireTemporary());
moveAR(c, size, a, &tmp);
pushR(c, size, &tmp);
c->client->releaseTemporary(tmp.low);
}
void
pushR(Context* c, unsigned size, Assembler::Register* a)
{
if (BytesPerWord == 4 and size == 8) {
Assembler::Register ah(a->high);
pushR(c, 4, &ah);
pushR(c, 4, a);
} else {
c->code.append(0x50 | a->low);
}
}
void
pushM(Context* c, unsigned size, Assembler::Memory* a)
{
if (BytesPerWord == 4 and size == 8) {
Assembler::Memory ah(a->base, a->offset + 4, a->index, a->scale);
pushM(c, 4, &ah);
pushM(c, 4, a);
} else {
assert(c, BytesPerWord == 4 or size == 8);
encode(c, 0xff, 6, a, false);
}
}
void
move4To8RR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b);
void
popR(Context* c, unsigned size, Assembler::Register* a)
{
if (BytesPerWord == 4 and size == 8) {
Assembler::Register ah(a->high);
popR(c, 4, a);
popR(c, 4, &ah);
} else {
c->code.append(0x58 | a->low);
if (BytesPerWord == 8 and size == 4) {
move4To8RR(c, 0, a, a);
}
}
}
void
popM(Context* c, unsigned size, Assembler::Memory* a)
{
if (BytesPerWord == 4 and size == 8) {
Assembler::Memory ah(a->base, a->offset + 4, a->index, a->scale);
popM(c, 4, a);
popM(c, 4, &ah);
} else {
assert(c, BytesPerWord == 4 or size == 8);
encode(c, 0x8f, 0, a, false);
}
}
void
addCarryCR(Context* c, unsigned size UNUSED, Assembler::Constant* a,
Assembler::Register* b)
{
assert(c, BytesPerWord == 8 or size == 4);
int64_t v = a->value->value();
if (isInt8(v)) {
c->code.append(0x83);
c->code.append(0xd0 | b->low);
c->code.append(v);
} else {
abort(c);
}
}
void
moveRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b);
void
xorRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b);
void
negateR(Context* c, unsigned size, Assembler::Register* a)
{
if (BytesPerWord == 4 and size == 8) {
assert(c, a->low == rax and a->high == rdx);
ResolvedPromise zeroPromise(0);
Assembler::Constant zero(&zeroPromise);
Assembler::Register ah(a->high);
negateR(c, 4, a);
addCarryCR(c, 4, &zero, &ah);
negateR(c, 4, &ah);
} else {
if (size == 8) rex(c);
c->code.append(0xf7);
c->code.append(0xd8 | a->low);
}
}
void
leaMR(Context* c, unsigned size, Assembler::Memory* b, Assembler::Register* a)
{
if (BytesPerWord == 8 and size == 4) {
encode(c, 0x8d, a->low, b, false);
} else {
assert(c, BytesPerWord == 8 or size == 4);
encode(c, 0x8d, a->low, b, true);
}
}
void
moveCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
if (BytesPerWord == 4 and size == 8) {
int64_t v = a->value->value();
ResolvedPromise high((v >> 32) & 0xFFFFFFFF);
Assembler::Constant ah(&high);
ResolvedPromise low(v & 0xFFFFFFFF);
Assembler::Constant al(&low);
Assembler::Register bh(b->high);
moveCR(c, 4, &al, b);
moveCR(c, 4, &ah, &bh);
} else {
rex(c, 0x48, b->low);
c->code.append(0xb8 | b->low);
if (a->value->resolved()) {
c->code.appendAddress(a->value->value());
} else {
appendImmediateTask(c, a->value, c->code.length());
c->code.appendAddress(static_cast<uintptr_t>(0));
}
}
}
void
moveCM(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Memory* b)
{
int64_t v = a->value->value();
switch (size) {
case 1:
encode(c, 0xc6, 0, b, false);
c->code.append(a->value->value());
break;
case 2:
encode2(c, 0x66c7, 0, b, false);
c->code.append2(a->value->value());
break;
case 4:
encode(c, 0xc7, 0, b, false);
c->code.append4(a->value->value());
break;
case 8: {
ResolvedPromise high((v >> 32) & 0xFFFFFFFF);
Assembler::Constant ah(&high);
ResolvedPromise low(v & 0xFFFFFFFF);
Assembler::Constant al(&low);
Assembler::Memory bh(b->base, b->offset + 4, b->index, b->scale);
moveCM(c, 4, &al, b);
moveCM(c, 4, &ah, &bh);
} break;
default: abort(c);
}
}
void
moveRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
if (BytesPerWord == 4 and size == 8) {
Assembler::Register ah(a->high);
Assembler::Register bh(b->high);
moveRR(c, 4, a, b);
moveRR(c, 4, &ah, &bh);
} else {
switch (size) {
case 1:
if (BytesPerWord == 4 and a->low > rbx) {
assert(c, b->low <= rbx);
moveRR(c, BytesPerWord, a, b);
moveRR(c, 1, b, b);
} else {
rex(c);
c->code.append(0x0f);
c->code.append(0xbe);
c->code.append(0xc0 | (b->low << 3) | a->low);
}
break;
case 2:
rex(c);
c->code.append(0x0f);
c->code.append(0xbf);
c->code.append(0xc0 | (b->low << 3) | a->low);
break;
case 8:
case 4:
if (a->low != b->low) {
rex(c);
c->code.append(0x89);
c->code.append(0xc0 | (a->low << 3) | b->low);
}
break;
}
}
}
void
moveRM(Context* c, unsigned size, Assembler::Register* a, Assembler::Memory* b)
{
if (BytesPerWord == 4 and size == 8) {
Assembler::Register ah(a->high);
Assembler::Memory bh(b->base, b->offset + 4, b->index, b->scale);
moveRM(c, 4, a, b);
moveRM(c, 4, &ah, &bh);
} else if (BytesPerWord == 8 and size == 4) {
encode(c, 0x89, a->low, b, false);
} else {
switch (size) {
case 1:
if (BytesPerWord == 8) {
if (a->low > rbx) {
encode2(c, 0x4088, a->low, b, false);
} else {
encode(c, 0x88, a->low, b, false);
}
} else {
assert(c, a->low <= rbx);
encode(c, 0x88, a->low, b, false);
}
break;
case 2:
encode2(c, 0x6689, a->low, b, false);
break;
case BytesPerWord:
encode(c, 0x89, a->low, b, true);
break;
default: abort(c);
}
}
}
void
move4To8CR(Context* c, unsigned, Assembler::Constant* a,
Assembler::Register* b)
{
moveCR(c, 8, a, b);
}
void
move4To8RR(Context* c, unsigned, Assembler::Register* a,
Assembler::Register* b)
{
if (BytesPerWord == 8) {
rex(c);
c->code.append(0x63);
c->code.append(0xc0 | (b->low << 3) | a->low);
} else {
if (a->low == rax and b->low == rax and b->high == rdx) {
c->code.append(0x99); // cdq
} else {
assert(c, b->low == rax and b->high == rdx);
moveRR(c, 4, a, b);
move4To8RR(c, 0, b, b);
}
}
}
void
moveMR(Context* c, unsigned size, Assembler::Memory* a, Assembler::Register* b)
{
switch (size) {
case 1:
encode2(c, 0x0fbe, b->low, a, true);
break;
case 2:
encode2(c, 0x0fbf, b->low, a, true);
break;
case 4:
case 8:
if (BytesPerWord == 4 and size == 8) {
Assembler::Memory ah(a->base, a->offset + 4, a->index, a->scale);
Assembler::Register bh(b->high);
moveMR(c, 4, a, b);
moveMR(c, 4, &ah, &bh);
} else if (BytesPerWord == 8 and size == 4) {
encode(c, 0x63, b->low, a, true);
} else {
encode(c, 0x8b, b->low, a, true);
}
break;
default: abort(c);
}
}
void
moveAR(Context* c, unsigned size, Assembler::Address* a,
Assembler::Register* b)
{
assert(c, BytesPerWord == 8 or size == 4); // todo
Assembler::Constant constant(a->address);
Assembler::Memory memory(b->low, 0, -1, 0);
moveCR(c, size, &constant, b);
moveMR(c, size, &memory, b);
}
void
moveAM(Context* c, unsigned size, Assembler::Address* a,
Assembler::Memory* b)
{
assert(c, BytesPerWord == 8 or size == 4); // todo
Assembler::Register tmp(c->client->acquireTemporary());
moveAR(c, size, a, &tmp);
moveRM(c, size, &tmp, b);
c->client->releaseTemporary(tmp.low);
}
void
moveMM(Context* c, unsigned size, Assembler::Memory* a,
Assembler::Memory* b)
{
if (BytesPerWord == 8 or size <= 4) {
uint32_t mask;
if (BytesPerWord == 4 and size == 1) {
mask = (1 << rax) | (1 << rcx) | (1 << rdx) | (1 << rbx);
} else {
mask = ~static_cast<uint32_t>(0);
}
Assembler::Register tmp(c->client->acquireTemporary(mask));
moveMR(c, size, a, &tmp);
moveRM(c, size, &tmp, b);
c->client->releaseTemporary(tmp.low);
} else {
Assembler::Register tmp(c->client->acquireTemporary(),
c->client->acquireTemporary());
moveMR(c, size, a, &tmp);
moveRM(c, size, &tmp, b);
c->client->releaseTemporary(tmp.low);
c->client->releaseTemporary(tmp.high);
}
}
void
move4To8MR(Context* c, unsigned, Assembler::Memory* a, Assembler::Register* b)
{
if (BytesPerWord == 8) {
encode(c, 0x63, b->low, a, true);
} else {
assert(c, b->low == rax and b->high == rdx);
moveMR(c, 4, a, b);
move4To8RR(c, 0, b, b);
}
}
void
moveZMR(Context* c, unsigned size, Assembler::Memory* a,
Assembler::Register* b)
{
switch (size) {
case 2:
encode2(c, 0x0fb7, b->low, a, true);
break;
default: abort(c); // todo
}
}
void
moveZRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
switch (size) {
case 2:
rex(c);
c->code.append(0x0f);
c->code.append(0xb7);
c->code.append(0xc0 | (b->low << 3) | a->low);
break;
default: abort(c); // todo
}
}
void
swapRR(Context* c, unsigned, Assembler::Register* a, Assembler::Register* b)
{
rex(c);
c->code.append(0x87);
c->code.append(0xc0 | (b->low << 3) | a->low);
}
void
addCM(Context* c, unsigned size UNUSED, Assembler::Constant* a,
Assembler::Memory* b)
{
assert(c, BytesPerWord == 8 or size == 4); // todo
int64_t v = a->value->value();
unsigned i = (isInt8(v) ? 0x83 : 0x81);
encode(c, i, 0, b, true);
if (isInt8(v)) {
c->code.append(v);
} else if (isInt32(v)) {
c->code.append4(v);
} else {
abort(c);
}
}
void
addCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
int64_t v = a->value->value();
if (v) {
if (BytesPerWord == 4 and size == 8) {
ResolvedPromise high((v >> 32) & 0xFFFFFFFF);
Assembler::Constant ah(&high);
ResolvedPromise low(v & 0xFFFFFFFF);
Assembler::Constant al(&low);
Assembler::Register bh(b->high);
addCR(c, 4, &al, b);
addCarryCR(c, 4, &ah, &bh);
} else {
if (size == 8) rex(c);
if (isInt8(v)) {
c->code.append(0x83);
c->code.append(0xc0 | b->low);
c->code.append(v);
} else if (isInt32(v)) {
c->code.append(0x81);
c->code.append(0xc0 | b->low);
c->code.append4(v);
} else {
abort(c);
}
}
}
}
void
subtractBorrowCR(Context* c, unsigned size UNUSED, Assembler::Constant* a,
Assembler::Register* b)
{
assert(c, BytesPerWord == 8 or size == 4);
int64_t v = a->value->value();
if (isInt8(v)) {
c->code.append(0x83);
c->code.append(0xd8 | b->low);
c->code.append(v);
} else {
abort(c);
}
}
void
subtractCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
int64_t v = a->value->value();
if (v) {
if (BytesPerWord == 4 and size == 8) {
ResolvedPromise high((v >> 32) & 0xFFFFFFFF);
Assembler::Constant ah(&high);
ResolvedPromise low(v & 0xFFFFFFFF);
Assembler::Constant al(&low);
Assembler::Register bh(b->high);
subtractCR(c, 4, &al, b);
subtractBorrowCR(c, 4, &ah, &bh);
} else {
if (size == 8) rex(c);
if (isInt8(v)) {
c->code.append(0x83);
c->code.append(0xe8 | b->low);
c->code.append(v);
} else if (isInt32(v)) {
c->code.append(0x81);
c->code.append(0xe8 | b->low);
c->code.append4(v);
} else {
abort(c);
}
}
}
}
void
subtractBorrowRR(Context* c, unsigned size UNUSED, Assembler::Register* a,
Assembler::Register* b)
{
assert(c, BytesPerWord == 8 or size == 4);
if (size == 8) rex(c);
c->code.append(0x19);
c->code.append(0xc0 | (a->low << 3) | b->low);
}
void
subtractRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
if (BytesPerWord == 4 and size == 8) {
Assembler::Register ah(a->high);
Assembler::Register bh(b->high);
subtractRR(c, 4, a, b);
subtractBorrowRR(c, 4, &ah, &bh);
} else {
if (size == 8) rex(c);
c->code.append(0x29);
c->code.append(0xc0 | (a->low << 3) | b->low);
}
}
void
addCarryRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
assert(c, BytesPerWord == 8 or size == 4);
if (size == 8) rex(c);
c->code.append(0x11);
c->code.append(0xc0 | (a->low << 3) | b->low);
}
void
addRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
if (BytesPerWord == 4 and size == 8) {
Assembler::Register ah(a->high);
Assembler::Register bh(b->high);
addRR(c, 4, a, b);
addCarryRR(c, 4, &ah, &bh);
} else {
if (size == 8) rex(c);
c->code.append(0x01);
c->code.append(0xc0 | (a->low << 3) | b->low);
}
}
void
addRM(Context* c, unsigned size UNUSED, Assembler::Register* a,
Assembler::Memory* b)
{
assert(c, BytesPerWord == 8 or size == 4);
encode(c, 0x01, a->low, b, true);
}
void
multiplyRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
if (BytesPerWord == 4 and size == 8) {
assert(c, b->high == rdx);
assert(c, b->low != rax);
assert(c, a->low != rax);
assert(c, a->high != rax);
c->client->save(rax);
Assembler::Register axdx(rax, rdx);
Assembler::Register ah(a->high);
Assembler::Register bh(b->high);
moveRR(c, 4, b, &axdx);
multiplyRR(c, 4, &ah, b);
multiplyRR(c, 4, a, &bh);
addRR(c, 4, &bh, b);
// mul a->low,%eax%edx
c->code.append(0xf7);
c->code.append(0xe0 | a->low);
addRR(c, 4, b, &bh);
moveRR(c, 4, &axdx, b);
c->client->restore(rax);
} else {
if (size == 8) rex(c);
c->code.append(0x0f);
c->code.append(0xaf);
c->code.append(0xc0 | (b->low << 3) | a->low);
}
}
void
multiplyCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
if (BytesPerWord == 4 and size == 8) {
const uint32_t mask = ~((1 << rax) | (1 << rdx));
Assembler::Register tmp(c->client->acquireTemporary(mask),
c->client->acquireTemporary(mask));
moveCR(c, size, a, &tmp);
multiplyRR(c, size, &tmp, b);
c->client->releaseTemporary(tmp.low);
c->client->releaseTemporary(tmp.high);
} else {
int64_t v = a->value->value();
if (v != 1) {
if (isInt32(v)) {
if (size == 8) rex(c);
if (isInt8(v)) {
c->code.append(0x6b);
c->code.append(0xc0 | (b->low << 3) | b->low);
c->code.append(v);
} else {
c->code.append(0x69);
c->code.append(0xc0 | (b->low << 3) | b->low);
c->code.append4(v);
}
} else {
Assembler::Register tmp(c->client->acquireTemporary());
moveCR(c, size, a, &tmp);
multiplyRR(c, size, &tmp, b);
c->client->releaseTemporary(tmp.low);
}
}
}
}
void
divideRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b UNUSED)
{
assert(c, BytesPerWord == 8 or size == 4);
assert(c, b->low == rax);
assert(c, a->low != rdx);
c->client->save(rdx);
if (size == 8) rex(c);
c->code.append(0x99); // cdq
if (size == 8) rex(c);
c->code.append(0xf7);
c->code.append(0xf8 | a->low);
c->client->restore(rdx);
}
void
divideCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
assert(c, BytesPerWord == 8 or size == 4);
const uint32_t mask = ~((1 << rax) | (1 << rdx));
Assembler::Register tmp(c->client->acquireTemporary(mask));
moveCR(c, size, a, &tmp);
divideRR(c, size, &tmp, b);
c->client->releaseTemporary(tmp.low);
}
void
remainderRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
assert(c, BytesPerWord == 8 or size == 4);
assert(c, b->low == rax);
assert(c, a->low != rdx);
c->client->save(rdx);
if (size == 8) rex(c);
c->code.append(0x99); // cdq
if (size == 8) rex(c);
c->code.append(0xf7);
c->code.append(0xf8 | a->low);
Assembler::Register dx(rdx);
moveRR(c, BytesPerWord, &dx, b);
c->client->restore(rdx);
}
void
remainderCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
assert(c, BytesPerWord == 8 or size == 4);
const uint32_t mask = ~((1 << rax) | (1 << rdx));
Assembler::Register tmp(c->client->acquireTemporary(mask));
moveCR(c, size, a, &tmp);
remainderRR(c, size, &tmp, b);
c->client->releaseTemporary(tmp.low);
}
void
andRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
if (BytesPerWord == 4 and size == 8) {
Assembler::Register ah(a->high);
Assembler::Register bh(b->high);
andRR(c, 4, a, b);
andRR(c, 4, &ah, &bh);
} else {
if (size == 8) rex(c);
c->code.append(0x21);
c->code.append(0xc0 | (a->low << 3) | b->low);
}
}
void
andCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
int64_t v = a->value->value();
if (BytesPerWord == 4 and size == 8) {
ResolvedPromise high((v >> 32) & 0xFFFFFFFF);
Assembler::Constant ah(&high);
ResolvedPromise low(v & 0xFFFFFFFF);
Assembler::Constant al(&low);
Assembler::Register bh(b->high);
andCR(c, 4, &al, b);
andCR(c, 4, &ah, &bh);
} else {
if (isInt32(v)) {
if (size == 8) rex(c);
if (isInt8(v)) {
c->code.append(0x83);
c->code.append(0xe0 | b->low);
c->code.append(v);
} else {
c->code.append(0x81);
c->code.append(0xe0 | b->low);
c->code.append4(v);
}
} else {
Assembler::Register tmp(c->client->acquireTemporary());
moveCR(c, size, a, &tmp);
andRR(c, size, &tmp, b);
c->client->releaseTemporary(tmp.low);
}
}
}
void
andCM(Context* c, unsigned size UNUSED, Assembler::Constant* a,
Assembler::Memory* b)
{
assert(c, BytesPerWord == 8 or size == 4);
int64_t v = a->value->value();
encode(c, isInt8(a->value->value()) ? 0x83 : 0x81, 5, b, true);
if (isInt8(v)) {
c->code.append(v);
} else if (isInt32(v)) {
c->code.append4(v);
} else {
abort(c);
}
}
void
orRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
if (BytesPerWord == 4 and size == 8) {
Assembler::Register ah(a->high);
Assembler::Register bh(b->high);
orRR(c, 4, a, b);
orRR(c, 4, &ah, &bh);
} else {
if (size == 8) rex(c);
c->code.append(0x09);
c->code.append(0xc0 | (a->low << 3) | b->low);
}
}
void
orCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
int64_t v = a->value->value();
if (v) {
if (BytesPerWord == 4 and size == 8) {
ResolvedPromise high((v >> 32) & 0xFFFFFFFF);
Assembler::Constant ah(&high);
ResolvedPromise low(v & 0xFFFFFFFF);
Assembler::Constant al(&low);
Assembler::Register bh(b->high);
orCR(c, 4, &al, b);
orCR(c, 4, &ah, &bh);
} else {
if (isInt32(v)) {
if (size == 8) rex(c);
if (isInt8(v)) {
c->code.append(0x83);
c->code.append(0xc8 | b->low);
c->code.append(v);
} else {
c->code.append(0x81);
c->code.append(0xc8 | b->low);
c->code.append4(v);
}
} else {
Assembler::Register tmp(c->client->acquireTemporary());
moveCR(c, size, a, &tmp);
orRR(c, size, &tmp, b);
c->client->releaseTemporary(tmp.low);
}
}
}
}
void
xorRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
if (BytesPerWord == 4 and size == 8) {
Assembler::Register ah(a->high);
Assembler::Register bh(b->high);
xorRR(c, 4, a, b);
xorRR(c, 4, &ah, &bh);
} else {
if (size == 8) rex(c);
c->code.append(0x31);
c->code.append(0xc0 | (a->low << 3) | b->low);
}
}
void
xorCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
int64_t v = a->value->value();
if (v) {
if (BytesPerWord == 4 and size == 8) {
ResolvedPromise high((v >> 32) & 0xFFFFFFFF);
Assembler::Constant ah(&high);
ResolvedPromise low(v & 0xFFFFFFFF);
Assembler::Constant al(&low);
Assembler::Register bh(b->high);
xorCR(c, 4, &al, b);
xorCR(c, 4, &ah, &bh);
} else {
if (isInt32(v)) {
if (size == 8) rex(c);
if (isInt8(v)) {
c->code.append(0x83);
c->code.append(0xf0 | b->low);
c->code.append(v);
} else {
c->code.append(0x81);
c->code.append(0xf0 | b->low);
c->code.append4(v);
}
} else {
Assembler::Register tmp(c->client->acquireTemporary());
moveCR(c, size, a, &tmp);
xorRR(c, size, &tmp, b);
c->client->releaseTemporary(tmp.low);
}
}
}
}
void
doShift(Context* c, void (*shift)
(Context*, unsigned, Assembler::Register*, Assembler::Register*),
int type, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
int64_t v = a->value->value();
if (BytesPerWord == 4 and size == 8) {
c->client->save(rcx);
Assembler::Register cx(rcx);
moveCR(c, 4, a, &cx);
shift(c, size, &cx, b);
c->client->restore(rcx);
} else {
if (size == 8) rex(c);
if (v == 1) {
c->code.append(0xd1);
c->code.append(type | b->low);
} else if (isInt8(v)) {
c->code.append(0xc1);
c->code.append(type | b->low);
c->code.append(v);
} else {
abort(c);
}
}
}
void
compareCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b);
void
shiftLeftRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
assert(c, a->low == rcx);
if (BytesPerWord == 4 and size == 8) {
// shld
c->code.append(0x0f);
c->code.append(0xa5);
c->code.append(0xc0 | (b->low << 3) | b->high);
// shl
c->code.append(0xd3);
c->code.append(0xe0 | b->low);
ResolvedPromise promise(32);
Assembler::Constant constant(&promise);
compareCR(c, 4, &constant, a);
c->code.append(0x0f);
c->code.append(0x8c); // jl
c->code.append4(2 + 2);
Assembler::Register bh(b->high);
moveRR(c, 4, b, &bh); // 2 bytes
xorRR(c, 4, b, b); // 2 bytes
} else {
if (size == 8) rex(c);
c->code.append(0xd3);
c->code.append(0xe0 | b->low);
}
}
void
shiftLeftCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
doShift(c, shiftLeftRR, 0xe0, size, a, b);
}
void
shiftRightRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
assert(c, a->low == rcx);
if (BytesPerWord == 4 and size == 8) {
// shrd
c->code.append(0x0f);
c->code.append(0xad);
c->code.append(0xc0 | (b->high << 3) | b->low);
// sar
c->code.append(0xd3);
c->code.append(0xf8 | b->high);
ResolvedPromise promise(32);
Assembler::Constant constant(&promise);
compareCR(c, 4, &constant, a);
c->code.append(0x0f);
c->code.append(0x8c); // jl
c->code.append4(2 + 3);
Assembler::Register bh(b->high);
moveRR(c, 4, &bh, b); // 2 bytes
// sar 31,high
c->code.append(0xc1);
c->code.append(0xf8 | b->high);
c->code.append(31);
} else {
if (size == 8) rex(c);
c->code.append(0xd3);
c->code.append(0xf8 | b->low);
}
}
void
shiftRightCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
doShift(c, shiftRightRR, 0xf8, size, a, b);
}
void
unsignedShiftRightRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
assert(c, a->low == rcx);
if (BytesPerWord == 4 and size == 8) {
// shrd
c->code.append(0x0f);
c->code.append(0xad);
c->code.append(0xc0 | (b->high << 3) | b->low);
// shr
c->code.append(0xd3);
c->code.append(0xe8 | b->high);
ResolvedPromise promise(32);
Assembler::Constant constant(&promise);
compareCR(c, 4, &constant, a);
c->code.append(0x0f);
c->code.append(0x8c); // jl
c->code.append4(2 + 2);
Assembler::Register bh(b->high);
moveRR(c, 4, &bh, b); // 2 bytes
xorRR(c, 4, &bh, &bh); // 2 bytes
} else {
if (size == 8) rex(c);
c->code.append(0xd3);
c->code.append(0xe8 | b->low);
}
}
void
unsignedShiftRightCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
doShift(c, unsignedShiftRightRR, 0xe8, size, a, b);
}
void
compareRR(Context* c, unsigned size, Assembler::Register* a,
Assembler::Register* b)
{
assert(c, BytesPerWord == 8 or size == 4);
if (size == 8) rex(c);
c->code.append(0x39);
c->code.append(0xc0 | (a->low << 3) | b->low);
}
void
compareAR(Context* c, unsigned size, Assembler::Address* a,
Assembler::Register* b)
{
assert(c, BytesPerWord == 8 or size == 4);
Assembler::Register tmp(c->client->acquireTemporary());
moveAR(c, size, a, &tmp);
compareRR(c, size, &tmp, b);
c->client->releaseTemporary(tmp.low);
}
void
compareCR(Context* c, unsigned size, Assembler::Constant* a,
Assembler::Register* b)
{
assert(c, BytesPerWord == 8 or size == 4);
int64_t v = a->value->value();
if (isInt32(v)) {
if (size == 8) rex(c);
if (isInt8(v)) {
c->code.append(0x83);
c->code.append(0xf8 | b->low);
c->code.append(v);
} else {
c->code.append(0x81);
c->code.append(0xf8 | b->low);
c->code.append4(v);
}
} else {
Assembler::Register tmp(c->client->acquireTemporary());
moveCR(c, size, a, &tmp);
compareRR(c, size, &tmp, b);
c->client->releaseTemporary(tmp.low);
}
}
void
compareCM(Context* c, unsigned size UNUSED, Assembler::Constant* a,
Assembler::Memory* b)
{
assert(c, BytesPerWord == 8 or size == 4);
int64_t v = a->value->value();
encode(c, isInt8(v) ? 0x83 : 0x81, 7, b, true);
if (isInt8(v)) {
c->code.append(v);
} else if (isInt32(v)) {
c->code.append4(v);
} else {
abort(c);
}
}
void
compareRM(Context* c, unsigned size, Assembler::Register* a,
Assembler::Memory* b)
{
assert(c, BytesPerWord == 8 or size == 4);
if (BytesPerWord == 8 and size == 4) {
move4To8RR(c, size, a, a);
}
encode(c, 0x39, a->low, b, true);
}
void
compareMR(Context* c, unsigned size, Assembler::Memory* a,
Assembler::Register* b)
{
assert(c, BytesPerWord == 8 or size == 4);
if (BytesPerWord == 8 and size == 4) {
move4To8RR(c, size, b, b);
}
encode(c, 0x3b, b->low, a, true);
}
void
compareMM(Context* c, unsigned size, Assembler::Memory* a,
Assembler::Memory* b)
{
assert(c, BytesPerWord == 8 or size == 4);
Assembler::Register tmp(c->client->acquireTemporary());
moveMR(c, size, a, &tmp);
compareRM(c, size, &tmp, b);
c->client->releaseTemporary(tmp.low);
}
void
compareRC(Context* c, unsigned size, Assembler::Register* a,
Assembler::Constant* b)
{
assert(c, BytesPerWord == 8 or size == 4);
Assembler::Register tmp(c->client->acquireTemporary());
moveCR(c, size, b, &tmp);
compareRR(c, size, a, &tmp);
c->client->releaseTemporary(tmp.low);
}
void
longCompare(Context* c, Assembler::Operand* al, Assembler::Operand* ah,
Assembler::Operand* bl, Assembler::Operand* bh,
BinaryOperationType compare, BinaryOperationType move)
{
ResolvedPromise negativePromise(-1);
Assembler::Constant negative(&negativePromise);
ResolvedPromise zeroPromise(0);
Assembler::Constant zero(&zeroPromise);
ResolvedPromise positivePromise(1);
Assembler::Constant positive(&positivePromise);
if (BytesPerWord == 8) {
compare(c, 8, al, bl);
c->code.append(0x0f);
c->code.append(0x8c); // jl
unsigned less = c->code.length();
c->code.append4(0);
c->code.append(0x0f);
c->code.append(0x8f); // jg
unsigned greater = c->code.length();
c->code.append4(0);
move(c, 4, &zero, bl);
c->code.append(0xe9); // jmp
unsigned nextFirst = c->code.length();
c->code.append4(0);
int32_t lessOffset = c->code.length() - less - 4;
c->code.set(less, &lessOffset, 4);
move(c, 4, &negative, bl);
c->code.append(0xe9); // jmp
unsigned nextSecond = c->code.length();
c->code.append4(0);
int32_t greaterOffset = c->code.length() - greater - 4;
c->code.set(greater, &greaterOffset, 4);
move(c, 4, &positive, bl);
int32_t nextFirstOffset = c->code.length() - nextFirst - 4;
c->code.set(nextFirst, &nextFirstOffset, 4);
int32_t nextSecondOffset = c->code.length() - nextSecond - 4;
c->code.set(nextSecond, &nextSecondOffset, 4);
} else {
compare(c, 4, ah, bh);
c->code.append(0x0f);
c->code.append(0x8c); // jl
unsigned less = c->code.length();
c->code.append4(0);
c->code.append(0x0f);
c->code.append(0x8f); // jg
unsigned greater = c->code.length();
c->code.append4(0);
compare(c, 4, al, bl);
c->code.append(0x0f);
c->code.append(0x82); // ja
unsigned above = c->code.length();
c->code.append4(0);
c->code.append(0x0f);
c->code.append(0x87); // jb
unsigned below = c->code.length();
c->code.append4(0);
move(c, 4, &zero, bl);
c->code.append(0xe9); // jmp
unsigned nextFirst = c->code.length();
c->code.append4(0);
int32_t lessOffset = c->code.length() - less - 4;
c->code.set(less, &lessOffset, 4);
int32_t aboveOffset = c->code.length() - above - 4;
c->code.set(above, &aboveOffset, 4);
move(c, 4, &negative, bl);
c->code.append(0xe9); // jmp
unsigned nextSecond = c->code.length();
c->code.append4(0);
int32_t greaterOffset = c->code.length() - greater - 4;
c->code.set(greater, &greaterOffset, 4);
int32_t belowOffset = c->code.length() - below - 4;
c->code.set(below, &belowOffset, 4);
move(c, 4, &positive, bl);
int32_t nextFirstOffset = c->code.length() - nextFirst - 4;
c->code.set(nextFirst, &nextFirstOffset, 4);
int32_t nextSecondOffset = c->code.length() - nextSecond - 4;
c->code.set(nextSecond, &nextSecondOffset, 4);
}
}
void
longCompareCR(Context* c, unsigned size UNUSED, Assembler::Constant* a,
Assembler::Register* b)
{
assert(c, size == 8);
int64_t v = a->value->value();
ResolvedPromise low(v & 0xFFFFFFFF);
Assembler::Constant al(&low);
ResolvedPromise high((v >> 32) & 0xFFFFFFFF);
Assembler::Constant ah(&high);
Assembler::Register bh(b->high);
longCompare(c, &al, &ah, b, &bh, CAST2(compareCR), CAST2(moveCR));
}
void
longCompareRR(Context* c, unsigned size UNUSED, Assembler::Register* a,
Assembler::Register* b)
{
assert(c, size == 8);
Assembler::Register ah(a->high);
Assembler::Register bh(b->high);
longCompare(c, a, &ah, b, &bh, CAST2(compareRR), CAST2(moveCR));
}
void
populateTables()
{
Operations[Return] = return_;
const int Constant = ConstantOperand;
const int Address = AddressOperand;
const int Register = RegisterOperand;
const int Memory = MemoryOperand;
UnaryOperations[INDEX1(Call, Constant)] = CAST1(callC);
UnaryOperations[INDEX1(Call, Register)] = CAST1(callR);
UnaryOperations[INDEX1(Call, Memory)] = CAST1(callM);
UnaryOperations[INDEX1(LongCall, Constant)] = CAST1(longCallC);
UnaryOperations[INDEX1(AlignedCall, Constant)] = CAST1(alignedCallC);
UnaryOperations[INDEX1(Jump, Constant)] = CAST1(jumpC);
UnaryOperations[INDEX1(Jump, Register)] = CAST1(jumpR);
UnaryOperations[INDEX1(Jump, Memory)] = CAST1(jumpM);
UnaryOperations[INDEX1(LongJump, Constant)] = CAST1(longJumpC);
UnaryOperations[INDEX1(JumpIfEqual, Constant)] = CAST1(jumpIfEqualC);
UnaryOperations[INDEX1(JumpIfNotEqual, Constant)] = CAST1(jumpIfNotEqualC);
UnaryOperations[INDEX1(JumpIfGreater, Constant)] = CAST1(jumpIfGreaterC);
UnaryOperations[INDEX1(JumpIfGreaterOrEqual, Constant)]
= CAST1(jumpIfGreaterOrEqualC);
UnaryOperations[INDEX1(JumpIfLess, Constant)] = CAST1(jumpIfLessC);
UnaryOperations[INDEX1(JumpIfLessOrEqual, Constant)]
= CAST1(jumpIfLessOrEqualC);
UnaryOperations[INDEX1(Push, Constant)] = CAST1(pushC);
UnaryOperations[INDEX1(Push, Address)] = CAST1(pushA);
UnaryOperations[INDEX1(Push, Register)] = CAST1(pushR);
UnaryOperations[INDEX1(Push, Memory)] = CAST1(pushM);
UnaryOperations[INDEX1(Pop, Register)] = CAST1(popR);
UnaryOperations[INDEX1(Pop, Memory)] = CAST1(popM);
UnaryOperations[INDEX1(Negate, Register)] = CAST1(negateR);
BinaryOperations[INDEX2(LoadAddress, Memory, Register)] = CAST2(leaMR);
BinaryOperations[INDEX2(Move, Constant, Register)] = CAST2(moveCR);
BinaryOperations[INDEX2(Move, Constant, Memory)] = CAST2(moveCM);
BinaryOperations[INDEX2(Move, Register, Memory)] = CAST2(moveRM);
BinaryOperations[INDEX2(Move, Register, Register)] = CAST2(moveRR);
BinaryOperations[INDEX2(Move, Memory, Register)] = CAST2(moveMR);
BinaryOperations[INDEX2(Move, Address, Register)] = CAST2(moveAR);
BinaryOperations[INDEX2(Move, Address, Memory)] = CAST2(moveAM);
BinaryOperations[INDEX2(Move, Memory, Memory)] = CAST2(moveMM);
BinaryOperations[INDEX2(Move4To8, Constant, Register)] = CAST2(move4To8CR);
BinaryOperations[INDEX2(Move4To8, Register, Register)] = CAST2(move4To8RR);
BinaryOperations[INDEX2(Move4To8, Memory, Register)] = CAST2(move4To8MR);
BinaryOperations[INDEX2(MoveZ, Memory, Register)] = CAST2(moveZMR);
BinaryOperations[INDEX2(MoveZ, Register, Register)] = CAST2(moveZRR);
BinaryOperations[INDEX2(Swap, Register, Register)] = CAST2(swapRR);
BinaryOperations[INDEX2(Add, Constant, Register)] = CAST2(addCR);
BinaryOperations[INDEX2(Add, Register, Register)] = CAST2(addRR);
BinaryOperations[INDEX2(Add, Register, Memory)] = CAST2(addRM);
BinaryOperations[INDEX2(Add, Constant, Memory)] = CAST2(addCM);
BinaryOperations[INDEX2(Multiply, Register, Register)] = CAST2(multiplyRR);
BinaryOperations[INDEX2(Multiply, Constant, Register)] = CAST2(multiplyCR);
BinaryOperations[INDEX2(Divide, Register, Register)] = CAST2(divideRR);
BinaryOperations[INDEX2(Divide, Constant, Register)] = CAST2(divideCR);
BinaryOperations[INDEX2(Remainder, Constant, Register)] = CAST2(remainderCR);
BinaryOperations[INDEX2(Remainder, Register, Register)] = CAST2(remainderRR);
BinaryOperations[INDEX2(And, Register, Register)] = CAST2(andRR);
BinaryOperations[INDEX2(And, Constant, Register)] = CAST2(andCR);
BinaryOperations[INDEX2(And, Constant, Memory)] = CAST2(andCM);
BinaryOperations[INDEX2(Or, Register, Register)] = CAST2(orRR);
BinaryOperations[INDEX2(Or, Constant, Register)] = CAST2(orCR);
BinaryOperations[INDEX2(Xor, Register, Register)] = CAST2(xorRR);
BinaryOperations[INDEX2(Xor, Constant, Register)] = CAST2(xorCR);
BinaryOperations[INDEX2(ShiftLeft, Register, Register)] = CAST2(shiftLeftRR);
BinaryOperations[INDEX2(ShiftLeft, Constant, Register)] = CAST2(shiftLeftCR);
BinaryOperations[INDEX2(ShiftRight, Register, Register)]
= CAST2(shiftRightRR);
BinaryOperations[INDEX2(ShiftRight, Constant, Register)]
= CAST2(shiftRightCR);
BinaryOperations[INDEX2(UnsignedShiftRight, Register, Register)]
= CAST2(unsignedShiftRightRR);
BinaryOperations[INDEX2(UnsignedShiftRight, Constant, Register)]
= CAST2(unsignedShiftRightCR);
BinaryOperations[INDEX2(Subtract, Constant, Register)] = CAST2(subtractCR);
BinaryOperations[INDEX2(Subtract, Register, Register)] = CAST2(subtractRR);
BinaryOperations[INDEX2(LongCompare, Constant, Register)]
= CAST2(longCompareCR);
BinaryOperations[INDEX2(LongCompare, Register, Register)]
= CAST2(longCompareRR);
BinaryOperations[INDEX2(Compare, Constant, Register)] = CAST2(compareCR);
BinaryOperations[INDEX2(Compare, Register, Constant)] = CAST2(compareRC);
BinaryOperations[INDEX2(Compare, Register, Register)] = CAST2(compareRR);
BinaryOperations[INDEX2(Compare, Address, Register)] = CAST2(compareAR);
BinaryOperations[INDEX2(Compare, Register, Memory)] = CAST2(compareRM);
BinaryOperations[INDEX2(Compare, Memory, Register)] = CAST2(compareMR);
BinaryOperations[INDEX2(Compare, Constant, Memory)] = CAST2(compareCM);
BinaryOperations[INDEX2(Compare, Memory, Memory)] = CAST2(compareMM);
}
class MyAssembler: public Assembler {
public:
MyAssembler(System* s, Allocator* a, Zone* zone): c(s, a, zone) {
static bool populated = false;
if (not populated) {
populated = true;
populateTables();
}
}
virtual void setClient(Client* client) {
assert(&c, c.client == 0);
c.client = client;
}
virtual unsigned registerCount() {
return 8;//BytesPerWord == 4 ? 8 : 16;
}
virtual int base() {
return rbp;
}
virtual int stack() {
return rsp;
}
virtual int thread() {
return rbx;
}
virtual int returnLow() {
return rax;
}
virtual int returnHigh() {
return (BytesPerWord == 4 ? rdx : NoRegister);
}
virtual unsigned argumentRegisterCount() {
return (BytesPerWord == 4 ? 0 : 6);
}
virtual int argumentRegister(unsigned index) {
assert(&c, BytesPerWord == 8);
switch (index) {
case 0:
return rdi;
case 1:
return rsi;
case 2:
return rdx;
case 3:
return rcx;
case 4:
return r8;
case 5:
return r9;
default:
abort(&c);
}
}
virtual void plan(UnaryOperation op, unsigned size, uint8_t* typeMask,
uint64_t* registerMask, bool* thunk)
{
if (op == Negate and BytesPerWord == 4 and size == 8) {
*typeMask = 1 << RegisterOperand;
*registerMask = (static_cast<uint64_t>(1) << (rdx + 32))
| (static_cast<uint64_t>(1) << rax);
} else {
*typeMask = (1 << RegisterOperand) | (1 << MemoryOperand);
*registerMask = ~static_cast<uint64_t>(0);
}
*thunk = false;
}
virtual void plan(BinaryOperation op, unsigned size, uint8_t* aTypeMask,
uint64_t* aRegisterMask, uint8_t* bTypeMask,
uint64_t* bRegisterMask, bool* thunk)
{
*aTypeMask = ~0;
*aRegisterMask = ~static_cast<uint64_t>(0);
*bTypeMask = (1 << RegisterOperand) | (1 << MemoryOperand);
*bRegisterMask = ~static_cast<uint64_t>(0);
*thunk = false;
switch (op) {
case Compare:
if (BytesPerWord == 8 and size != 8) {
*aTypeMask = ~(1 << MemoryOperand);
*bTypeMask = ~(1 << MemoryOperand);
} else {
*bTypeMask = ~(1 << ConstantOperand);
}
break;
case Move:
if (BytesPerWord == 4 and size == 1) {
const uint32_t mask
= (1 << rax) | (1 << rcx) | (1 << rdx) | (1 << rbx);
*aRegisterMask = (static_cast<uint64_t>(mask) << 32) | mask;
*bRegisterMask = (static_cast<uint64_t>(mask) << 32) | mask;
}
break;
case Move4To8:
if (BytesPerWord == 4) {
const uint32_t mask = ~((1 << rax) | (1 << rdx));
*aRegisterMask = (static_cast<uint64_t>(mask) << 32) | mask;
*bRegisterMask = (static_cast<uint64_t>(1) << (rdx + 32))
| (static_cast<uint64_t>(1) << rax);
}
break;
case Multiply:
if (BytesPerWord == 4 and size == 8) {
const uint32_t mask = ~((1 << rax) | (1 << rdx));
*aRegisterMask = (static_cast<uint64_t>(mask) << 32) | mask;
*bRegisterMask = (static_cast<uint64_t>(1) << (rdx + 32)) | mask;
}
break;
case Divide:
if (BytesPerWord == 4 and size == 8) {
*bTypeMask = ~0;
*thunk = true;
} else {
*aRegisterMask = ~((1 << rax) | (1 << rdx));
*bRegisterMask = 1 << rax;
}
break;
case Remainder:
if (BytesPerWord == 4 and size == 8) {
*bTypeMask = ~0;
*thunk = true;
} else {
*aRegisterMask = ~((1 << rax) | (1 << rdx));
*bRegisterMask = 1 << rax;
}
break;
case ShiftLeft:
case ShiftRight:
case UnsignedShiftRight: {
*aTypeMask = (1 << RegisterOperand) | (1 << ConstantOperand);
*aRegisterMask = (~static_cast<uint64_t>(0) << 32)
| (static_cast<uint64_t>(1) << rcx);
const uint32_t mask = ~(1 << rcx);
*bRegisterMask = (static_cast<uint64_t>(mask) << 32) | mask;
} break;
default:
break;
}
}
virtual void apply(Operation op) {
Operations[op](&c);
}
virtual void apply(UnaryOperation op, unsigned size,
OperandType type, Operand* operand)
{
UnaryOperations[INDEX1(op, type)](&c, size, operand);
}
virtual void apply(BinaryOperation op, unsigned size,
OperandType aType, Operand* a,
OperandType bType, Operand* b)
{
BinaryOperations[INDEX2(op, aType, bType)](&c, size, a, b);
}
virtual void writeTo(uint8_t* dst) {
c.result = dst;
memcpy(dst, c.code.data, c.code.length());
for (Task* t = c.tasks; t; t = t->next) {
t->run(&c);
}
}
virtual unsigned length() {
return c.code.length();
}
virtual void updateCall(void* returnAddress, void* newTarget) {
uint8_t* instruction = static_cast<uint8_t*>(returnAddress) - 5;
assert(&c, *instruction == 0xE8);
assert(&c, reinterpret_cast<uintptr_t>(instruction + 1) % 4 == 0);
int32_t v = static_cast<uint8_t*>(newTarget)
- static_cast<uint8_t*>(returnAddress);
memcpy(instruction + 1, &v, 4);
}
virtual void dispose() {
c.code.dispose();
}
Context c;
};
} // namespace
namespace vm {
Assembler*
makeAssembler(System* system, Allocator* allocator, Zone* zone)
{
return new (zone->allocate(sizeof(MyAssembler)))
MyAssembler(system, allocator, zone);
}
} // namespace vm