mirror of
https://github.com/corda/corda.git
synced 2025-01-18 02:39:51 +00:00
4b3a804990
* Update SGX build to use deterministic OpenJDK repository. * Remove unused imports. * Update Kotlin dependencies. * Update Avian so that it compiles against our OpenJDK repo. Also include sunec.jar in the Avian binary. because the Enclavlet needs it. * Embed jsse.jar within Avian to enable X.509 support.
342 lines
9.4 KiB
Java
342 lines
9.4 KiB
Java
public class Integers {
|
|
private static void expect(boolean v) {
|
|
if (! v) throw new RuntimeException();
|
|
}
|
|
|
|
private static int gcd(int m, int n) {
|
|
int temp;
|
|
m = Math.abs(m);
|
|
n = Math.abs(n);
|
|
if (m < n) {
|
|
temp = m;
|
|
m = n;
|
|
n = temp;
|
|
}
|
|
while (n != 0) {
|
|
temp = m;
|
|
m = n;
|
|
n = temp % n;
|
|
}
|
|
return m;
|
|
}
|
|
|
|
private static void testNumberOfLeadingZeros() {
|
|
expect(Integer.numberOfLeadingZeros(Integer.MAX_VALUE) == 1);
|
|
expect(Integer.numberOfLeadingZeros(0) == 32);
|
|
|
|
int positive = 1;
|
|
int negative = Integer.MIN_VALUE;
|
|
for(int i = 0; i < 32; i++) {
|
|
expect(Integer.numberOfLeadingZeros(positive) == 32 - i - 1);
|
|
positive <<= 1;
|
|
|
|
expect(Integer.numberOfLeadingZeros(negative) == 0);
|
|
negative += ((int)Math.pow(2, i));
|
|
}
|
|
}
|
|
|
|
public static void main(String[] args) throws Exception {
|
|
{ int foo = 1028;
|
|
foo -= 1023;
|
|
expect(foo == 5);
|
|
}
|
|
|
|
expect(gcd(12, 4) == 4);
|
|
|
|
{ int a = 2;
|
|
int b = 2;
|
|
int c = a + b;
|
|
}
|
|
|
|
{ int a = 2;
|
|
int c = a + a;
|
|
}
|
|
|
|
{ int a = -5;
|
|
int b = 2;
|
|
expect(a >> b == -5 >> 2);
|
|
expect(a >>> b == -5 >>> 2);
|
|
expect(a << b == -5 << 2);
|
|
expect(a + b == -5 + 2);
|
|
expect(a - b == -5 - 2);
|
|
expect(a * b == -5 * 2);
|
|
expect(a / b == -5 / 2);
|
|
expect(a % b == -5 % 2);
|
|
expect((a & b) == (-5 & 2));
|
|
expect((a | b) == (-5 | 2));
|
|
expect((a ^ b) == (-5 ^ 2));
|
|
expect(-a == 5);
|
|
expect(~a == ~-5);
|
|
|
|
a = 5;
|
|
b = 2;
|
|
expect(a >> b == 5 >> 2);
|
|
expect(a >>> b == 5 >>> 2);
|
|
expect(a << b == 5 << 2);
|
|
expect(a + b == 5 + 2);
|
|
expect(a - b == 5 - 2);
|
|
expect(a * b == 5 * 2);
|
|
expect(a / b == 5 / 2);
|
|
expect(a % b == 5 % 2);
|
|
expect((a & b) == (5 & 2));
|
|
expect((a | b) == (5 | 2));
|
|
expect((a ^ b) == (5 ^ 2));
|
|
expect(-a == -5);
|
|
expect(~a == ~5);
|
|
}
|
|
|
|
{ int a = -5;
|
|
expect(a >> 2 == -5 >> 2);
|
|
expect(a >>> 2 == -5 >>> 2);
|
|
expect(a << 2 == -5 << 2);
|
|
expect(a + 2 == -5 + 2);
|
|
expect(a - 2 == -5 - 2);
|
|
expect(a * 2 == -5 * 2);
|
|
expect(a / 2 == -5 / 2);
|
|
expect(a % 2 == -5 % 2);
|
|
expect((a & 2) == (-5 & 2));
|
|
expect((a | 2) == (-5 | 2));
|
|
expect((a ^ 2) == (-5 ^ 2));
|
|
|
|
a = 5;
|
|
expect(a >> 2 == 5 >> 2);
|
|
expect(a >>> 2 == 5 >>> 2);
|
|
expect(a << 2 == 5 << 2);
|
|
expect(a + 2 == 5 + 2);
|
|
expect(a - 2 == 5 - 2);
|
|
expect(a * 2 == 5 * 2);
|
|
expect(a / 2 == 5 / 2);
|
|
expect(a % 2 == 5 % 2);
|
|
expect((a & 2) == (5 & 2));
|
|
expect((a | 2) == (5 | 2));
|
|
expect((a ^ 2) == (5 ^ 2));
|
|
}
|
|
|
|
{ int a = -5;
|
|
int b = 1234567;
|
|
expect(a + b == -5 + 1234567);
|
|
expect(a - b == -5 - 1234567);
|
|
expect(a * b == -5 * 1234567);
|
|
expect(a / b == -5 / 1234567);
|
|
expect(a % b == -5 % 1234567);
|
|
expect((a & b) == (-5 & 1234567));
|
|
expect((a | b) == (-5 | 1234567));
|
|
expect((a ^ b) == (-5 ^ 1234567));
|
|
|
|
a = 5;
|
|
b = 1234567;
|
|
expect(a + b == 5 + 1234567);
|
|
expect(a - b == 5 - 1234567);
|
|
expect(a * b == 5 * 1234567);
|
|
expect(a / b == 5 / 1234567);
|
|
expect(a % b == 5 % 1234567);
|
|
expect((a & b) == (5 & 1234567));
|
|
expect((a | b) == (5 | 1234567));
|
|
expect((a ^ b) == (5 ^ 1234567));
|
|
}
|
|
|
|
{ int a = -5;
|
|
expect(a + 1234567 == -5 + 1234567);
|
|
expect(a - 1234567 == -5 - 1234567);
|
|
expect(a * 1234567 == -5 * 1234567);
|
|
expect(a / 1234567 == -5 / 1234567);
|
|
expect(a % 1234567 == -5 % 1234567);
|
|
expect((a & 1234567) == (-5 & 1234567));
|
|
expect((a | 1234567) == (-5 | 1234567));
|
|
expect((a ^ 1234567) == (-5 ^ 1234567));
|
|
|
|
a = 5;
|
|
expect(a + 1234567 == 5 + 1234567);
|
|
expect(a - 1234567 == 5 - 1234567);
|
|
expect(a * 1234567 == 5 * 1234567);
|
|
expect(a / 1234567 == 5 / 1234567);
|
|
expect(a % 1234567 == 5 % 1234567);
|
|
expect((a & 1234567) == (5 & 1234567));
|
|
expect((a | 1234567) == (5 | 1234567));
|
|
expect((a ^ 1234567) == (5 ^ 1234567));
|
|
}
|
|
|
|
{ int a = -1234567;
|
|
int b = 2;
|
|
expect(a >> b == -1234567 >> 2);
|
|
expect(a >>> b == -1234567 >>> 2);
|
|
expect(a << b == -1234567 << 2);
|
|
expect(a + b == -1234567 + 2);
|
|
expect(a - b == -1234567 - 2);
|
|
expect(a * b == -1234567 * 2);
|
|
expect(a / b == -1234567 / 2);
|
|
expect(a % b == -1234567 % 2);
|
|
expect((a & b) == (-1234567 & 2));
|
|
expect((a | b) == (-1234567 | 2));
|
|
expect((a ^ b) == (-1234567 ^ 2));
|
|
expect(-a == 1234567);
|
|
expect(~a == ~-1234567);
|
|
|
|
a = 1234567;
|
|
b = 2;
|
|
expect(a >> b == 1234567 >> 2);
|
|
expect(a >>> b == 1234567 >>> 2);
|
|
expect(a << b == 1234567 << 2);
|
|
expect(a + b == 1234567 + 2);
|
|
expect(a - b == 1234567 - 2);
|
|
expect(a * b == 1234567 * 2);
|
|
expect(a / b == 1234567 / 2);
|
|
expect(a % b == 1234567 % 2);
|
|
expect((a & b) == (1234567 & 2));
|
|
expect((a | b) == (1234567 | 2));
|
|
expect((a ^ b) == (1234567 ^ 2));
|
|
expect(-a == -1234567);
|
|
expect(~a == ~1234567);
|
|
}
|
|
|
|
{ int a = -1234567;
|
|
expect(a >> 2 == -1234567 >> 2);
|
|
expect(a >>> 2 == -1234567 >>> 2);
|
|
expect(a << 2 == -1234567 << 2);
|
|
expect(a + 2 == -1234567 + 2);
|
|
expect(a - 2 == -1234567 - 2);
|
|
expect(a * 2 == -1234567 * 2);
|
|
expect(a / 2 == -1234567 / 2);
|
|
expect(a % 2 == -1234567 % 2);
|
|
expect((a & 2) == (-1234567 & 2));
|
|
expect((a | 2) == (-1234567 | 2));
|
|
expect((a ^ 2) == (-1234567 ^ 2));
|
|
|
|
a = 1234567;
|
|
expect(a >> 2 == 1234567 >> 2);
|
|
expect(a >>> 2 == 1234567 >>> 2);
|
|
expect(a << 2 == 1234567 << 2);
|
|
expect(a + 2 == 1234567 + 2);
|
|
expect(a - 2 == 1234567 - 2);
|
|
expect(a * 2 == 1234567 * 2);
|
|
expect(a / 2 == 1234567 / 2);
|
|
expect(a % 2 == 1234567 % 2);
|
|
expect((a & 2) == (1234567 & 2));
|
|
expect((a | 2) == (1234567 | 2));
|
|
expect((a ^ 2) == (1234567 ^ 2));
|
|
}
|
|
|
|
{ int a = -1234567;
|
|
int b = 1234567;
|
|
expect(a + b == -1234567 + 1234567);
|
|
expect(a - b == -1234567 - 1234567);
|
|
expect(a * b == -1234567 * 1234567);
|
|
expect(a / b == -1234567 / 1234567);
|
|
expect(a % b == -1234567 % 1234567);
|
|
expect((a & b) == (-1234567 & 1234567));
|
|
expect((a | b) == (-1234567 | 1234567));
|
|
expect((a ^ b) == (-1234567 ^ 1234567));
|
|
|
|
a = 1234567;
|
|
b = 1234567;
|
|
expect(a + b == 1234567 + 1234567);
|
|
expect(a - b == 1234567 - 1234567);
|
|
expect(a * b == 1234567 * 1234567);
|
|
expect(a / b == 1234567 / 1234567);
|
|
expect(a % b == 1234567 % 1234567);
|
|
expect((a & b) == (1234567 & 1234567));
|
|
expect((a | b) == (1234567 | 1234567));
|
|
expect((a ^ b) == (1234567 ^ 1234567));
|
|
}
|
|
|
|
{ int a = -1234567;
|
|
expect(a + 1234567 == -1234567 + 1234567);
|
|
expect(a - 1234567 == -1234567 - 1234567);
|
|
expect(a * 1234567 == -1234567 * 1234567);
|
|
expect(a / 1234567 == -1234567 / 1234567);
|
|
expect(a % 1234567 == -1234567 % 1234567);
|
|
expect((a & 1234567) == (-1234567 & 1234567));
|
|
expect((a | 1234567) == (-1234567 | 1234567));
|
|
expect((a ^ 1234567) == (-1234567 ^ 1234567));
|
|
|
|
a = 1234567;
|
|
expect(a + 1234567 == 1234567 + 1234567);
|
|
expect(a - 1234567 == 1234567 - 1234567);
|
|
expect(a * 1234567 == 1234567 * 1234567);
|
|
expect(a / 1234567 == 1234567 / 1234567);
|
|
expect(a % 1234567 == 1234567 % 1234567);
|
|
expect((a & 1234567) == (1234567 & 1234567));
|
|
expect((a | 1234567) == (1234567 | 1234567));
|
|
expect((a ^ 1234567) == (1234567 ^ 1234567));
|
|
}
|
|
|
|
{ int get_buffer = 2144642881;
|
|
int bits_left = 30;
|
|
int l = 9;
|
|
int code = (((get_buffer >> (bits_left -= (l)))) & ((1<<(l))-1));
|
|
expect(code == 510);
|
|
}
|
|
|
|
{ int width = 8;
|
|
int height = 8;
|
|
int depth = 24;
|
|
int scanlinePad = 4;
|
|
|
|
int bytesPerLine = (((width * depth + 7) / 8) + (scanlinePad - 1))
|
|
/ scanlinePad * scanlinePad;
|
|
expect(bytesPerLine == 24);
|
|
}
|
|
|
|
{ int y = -11760768;
|
|
expect((y + 0x8000) == (-11760768 + 0x8000)); }
|
|
|
|
expect(Math.min(796, 1069) == 796);
|
|
|
|
{ int b = 1;
|
|
expect((b << 32) == 1); }
|
|
|
|
{ int b = 0xFFFFFFFF;
|
|
expect((b >>> -1) == 1); }
|
|
|
|
{ int b = 0x10000000;
|
|
expect((b >> -31) == 0x8000000); }
|
|
|
|
{ int b = 1; int s = 32;
|
|
expect((b << s) == 1); }
|
|
|
|
{ int b = 0xFFFFFFFF; int s = -1;
|
|
expect((b >>> s) == 1); }
|
|
|
|
{ int b = 0x10000000; int s = -31;
|
|
expect((b >> s) == 0x8000000); }
|
|
|
|
{ int b = 0xBE;
|
|
expect((b & 0xFF) == 0xBE); }
|
|
|
|
{ int b = 0xBE;
|
|
expect((b >>> 0) == 0xBE); }
|
|
|
|
{ int b = 0xBE;
|
|
expect((b >> 0) == 0xBE); }
|
|
|
|
{ int b = 0xBE;
|
|
expect((b << 0) == 0xBE); }
|
|
|
|
{ int b = 0xBE;
|
|
expect(((b >>> 0) & 0xFF) == 0xBE); }
|
|
|
|
{ int b = 0xBE; int x = 0xFF;
|
|
expect((b & x) == 0xBE); }
|
|
|
|
{ int b = 0xBE; int x = 0;
|
|
expect((b >>> x) == 0xBE); }
|
|
|
|
{ int b = 0xBE; int x = 0;
|
|
expect((b >> x) == 0xBE); }
|
|
|
|
{ int b = 0xBE; int x = 0;
|
|
expect((b << x) == 0xBE); }
|
|
|
|
{ int b = 0xBE; int x = 0; int y = 0xFF;
|
|
expect(((b >>> x) & y) == 0xBE); }
|
|
|
|
expect(123 == Integer.decode("123").intValue());
|
|
expect(-123 == Integer.decode("-123").intValue());
|
|
expect(-83 == Integer.decode("-0123").intValue());
|
|
expect(-291 == Integer.decode("-0x123").intValue());
|
|
expect(291 == Integer.decode("#123").intValue());
|
|
|
|
testNumberOfLeadingZeros();
|
|
}
|
|
}
|