corda/psw/ae/pce/pce.cpp
llly 6662022bf8 Linux 1.7 Open Source Gold release
Signed-off-by: Li, Xun <xun.li@email.com>
2016-12-20 09:47:15 +09:00

294 lines
10 KiB
C++

/*
* Copyright (C) 2011-2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "pce_cert.h"
#include "pce_t.c"
#include "aeerror.h"
#include "sgx_utils.h"
#include "ipp_wrapper.h"
#include "byte_order.h"
#include "pve_qe_common.h"
#include "arch.h"
#include <assert.h>
ae_error_t get_ppid(ppid_t* ppid);
ae_error_t get_pce_priv_key(const psvn_t* psvn, sgx_ec256_private_t* wrap_key);
#define PCE_RSA_SEED_SIZE 32
#define RSA_MOD_SIZE 256 //hardcode n size to be 256
#define RSA_E_SIZE 4 //hardcode e size to be 4
se_static_assert(RSA_MOD_SIZE == PEK_MOD_SIZE);
//Function to generate Current isvsvn from REPORT
static ae_error_t get_isv_svn(sgx_isv_svn_t* isv_svn)
{
sgx_status_t se_ret = SGX_SUCCESS;
sgx_report_t report;
memset(&report, 0, sizeof(report));
se_ret = sgx_create_report(NULL, NULL, &report);
if(SGX_SUCCESS != se_ret){
(void)memset_s(&report,sizeof(report), 0, sizeof(report));
return PCE_UNEXPECTED_ERROR;
}
memcpy(isv_svn, &report.body.isv_svn, sizeof(report.body.isv_svn));
(void)memset_s(&report, sizeof(report), 0, sizeof(report));
return AE_SUCCESS;
}
//always assume the format of public_key is module n of RSA public key followed by 4 bytes e and both n and e are in Big Endian
uint32_t get_pc_info(const sgx_report_t* report,
const uint8_t *public_key, uint32_t key_size,
uint8_t crypto_suite,
uint8_t *encrypted_ppid, uint32_t encrypted_ppid_buf_size,
uint32_t *encrypted_ppid_out_size,
pce_info_t *pce_info,
uint8_t *signature_scheme)
{
if (report == NULL ||
public_key == NULL ||
encrypted_ppid == NULL ||
encrypted_ppid_out_size == NULL ||
pce_info == NULL||
signature_scheme == NULL){
return AE_INVALID_PARAMETER;
}
if(ALG_RSA_OAEP_2048!=crypto_suite){//The only crypto suite supported in RSA 2048 where 256 bytes module n is used
return AE_INVALID_PARAMETER;
}
//RSA public key is mod || e
if (RSA_MOD_SIZE + RSA_E_SIZE != key_size)
{
return AE_INVALID_PARAMETER;
}
*encrypted_ppid_out_size = RSA_MOD_SIZE;//output size is same as public key module size
if (encrypted_ppid_buf_size < RSA_MOD_SIZE){
return AE_INSUFFICIENT_DATA_IN_BUFFER;
}
if(SGX_SUCCESS != sgx_verify_report(report)){
return PCE_INVALID_REPORT;
}
if((report->body.attributes.flags & SGX_FLAGS_PROVISION_KEY) != SGX_FLAGS_PROVISION_KEY ||
(report->body.attributes.flags & SGX_FLAGS_DEBUG) != 0){
return PCE_INVALID_PRIVILEGE;
}
uint8_t hash_buf[SGX_REPORT_DATA_SIZE];//hash value only use 32 bytes but data in report has 64 bytes size
se_static_assert(sizeof(hash_buf)>=sizeof(sgx_sha256_hash_t));
memset(hash_buf, 0, sizeof(hash_buf));
sgx_sha_state_handle_t sha_handle = NULL;
sgx_status_t sgx_ret = SGX_ERROR_UNEXPECTED;
do
{
sgx_ret = sgx_sha256_init(&sha_handle);
if (SGX_SUCCESS != sgx_ret)
break;
sgx_ret = sgx_sha256_update(&crypto_suite, sizeof(uint8_t), sha_handle);
if (SGX_SUCCESS != sgx_ret)
break;
sgx_ret = sgx_sha256_update(public_key, RSA_MOD_SIZE + RSA_E_SIZE, sha_handle);
if (SGX_SUCCESS != sgx_ret)
break;
sgx_ret = sgx_sha256_get_hash(sha_handle, reinterpret_cast<sgx_sha256_hash_t *>(hash_buf));
} while (0);
if (sha_handle != NULL)
sgx_sha256_close(sha_handle);
if (SGX_ERROR_OUT_OF_MEMORY == sgx_ret){
return AE_OUT_OF_MEMORY_ERROR;
}
else if (SGX_SUCCESS != sgx_ret){
return AE_FAILURE;
}
//verify the report data is SHA256(crypto_suite||public_key)||0-padding
if(memcmp(hash_buf, &report->body.report_data, sizeof(report->body.report_data))!=0){
return AE_INVALID_PARAMETER;
}
ppid_t ppid_buf;
IppsRSAPublicKeyState *pub_key = NULL;
int pub_key_size = 0;
Ipp8u seeds[PCE_RSA_SEED_SIZE] = { 0 };
uint8_t *pub_key_buffer = NULL;
IppStatus ipp_ret;
uint32_t little_endian_e = 0;
uint8_t *le_n = NULL;
ae_error_t ae_ret = get_ppid(&ppid_buf);
if(ae_ret!=AE_SUCCESS){
goto RETURN_POINT;
}
little_endian_e = lv_ntohl(*(public_key + RSA_MOD_SIZE));
le_n = (uint8_t *)malloc(RSA_MOD_SIZE);
if (le_n == NULL){
ae_ret = AE_OUT_OF_MEMORY_ERROR;
goto RETURN_POINT;
}
for (size_t i = 0; i<RSA_MOD_SIZE; i++){
le_n[i] = *(public_key + RSA_MOD_SIZE - 1 - i);//create little endian n
}
ipp_ret = create_rsa_pub_key(RSA_MOD_SIZE, RSA_E_SIZE,
reinterpret_cast<const Ipp32u *>(le_n),
&little_endian_e,
&pub_key);
free(le_n);
if (ippStsMemAllocErr == ipp_ret){
ae_ret = AE_OUT_OF_MEMORY_ERROR;
goto RETURN_POINT;
}
else if(ippStsNoErr != ipp_ret){//possible invalid rsa public key
ae_ret = AE_FAILURE;
goto RETURN_POINT;
}
ipp_ret = ippsRSA_GetBufferSizePublicKey(&pub_key_size, pub_key);
if (ipp_ret != ippStsNoErr){
ae_ret = AE_FAILURE;
goto RETURN_POINT;
}
if (SGX_SUCCESS != sgx_read_rand(seeds, PCE_RSA_SEED_SIZE)){
ae_ret = AE_READ_RAND_ERROR;
goto RETURN_POINT;
}
pub_key_buffer = (uint8_t *)malloc(pub_key_size);
if (pub_key_buffer == NULL){
ae_ret = AE_OUT_OF_MEMORY_ERROR;
goto RETURN_POINT;
}
ipp_ret = ippsRSAEncrypt_OAEP(reinterpret_cast<const Ipp8u *>(&ppid_buf), sizeof(ppid_buf), NULL, 0, seeds,
encrypted_ppid, pub_key, IPP_ALG_HASH_SHA256, pub_key_buffer);
if (ipp_ret != ippStsNoErr){
ae_ret = AE_FAILURE;
goto RETURN_POINT;
}
ae_ret = get_isv_svn(&pce_info->pce_isvn);
if (ae_ret != AE_SUCCESS){
goto RETURN_POINT;
}
pce_info->pce_id = CUR_PCE_ID;
*signature_scheme = NIST_P256_ECDSA_SHA256;
ae_ret = AE_SUCCESS;
RETURN_POINT:
memset_s(&ppid_buf, sizeof(ppid_buf), 0, sizeof(ppid_t));
if(NULL != pub_key)
secure_free_rsa_pub_key(RSA_MOD_SIZE, RSA_E_SIZE, pub_key);
if (NULL != pub_key_buffer)
free(pub_key_buffer);
if (AE_SUCCESS != ae_ret)
memset_s(encrypted_ppid, encrypted_ppid_buf_size, 0, *encrypted_ppid_out_size);
return ae_ret;
}
uint32_t certify_enclave(const psvn_t* cert_psvn,
const sgx_report_t* report,
uint8_t *signature,
uint32_t signature_buf_size,
uint32_t *signature_out_size)
{
if(cert_psvn==NULL||
report==NULL||
signature == NULL||
signature_out_size == NULL){
return AE_INVALID_PARAMETER;
}
if(signature_buf_size < sizeof(sgx_ec256_signature_t)){
*signature_out_size = sizeof(sgx_ec256_signature_t);
return AE_INSUFFICIENT_DATA_IN_BUFFER;
}
ae_error_t ae_ret = AE_FAILURE;
sgx_ecc_state_handle_t handle=NULL;
sgx_ec256_private_t ec_prv_key = {0};
sgx_status_t sgx_status = SGX_SUCCESS;
if(SGX_SUCCESS != sgx_verify_report(report)){
return PCE_INVALID_REPORT;
}
//only PvE could use the interface which has flag SGX_FLAGS_PROVISION_KEY
if((report->body.attributes.flags & SGX_FLAGS_PROVISION_KEY) != SGX_FLAGS_PROVISION_KEY ||
(report->body.attributes.flags & SGX_FLAGS_DEBUG) != 0){
return PCE_INVALID_PRIVILEGE;
}
ae_ret = get_pce_priv_key(cert_psvn, &ec_prv_key);
if(AE_SUCCESS!=ae_ret){
goto ret_point;
}
SWAP_ENDIAN_32B(&ec_prv_key);
sgx_status = sgx_ecc256_open_context(&handle);
if (SGX_ERROR_OUT_OF_MEMORY == sgx_status)
{
ae_ret = AE_OUT_OF_MEMORY_ERROR;
goto ret_point;
}
else if (SGX_SUCCESS != sgx_status) {
ae_ret = AE_FAILURE;
goto ret_point;
}
sgx_status = sgx_ecdsa_sign(reinterpret_cast<const uint8_t *>(&report->body), sizeof(report->body),
&ec_prv_key, reinterpret_cast<sgx_ec256_signature_t *>(signature), handle);
if (SGX_ERROR_OUT_OF_MEMORY == sgx_status)
{
ae_ret = AE_OUT_OF_MEMORY_ERROR;
goto ret_point;
}
else if (SGX_SUCCESS != sgx_status) {
ae_ret = AE_FAILURE;
goto ret_point;
}
//swap from little endian used in sgx_crypto to big endian used in network byte order
SWAP_ENDIAN_32B(reinterpret_cast<sgx_ec256_signature_t *>(signature)->x);
SWAP_ENDIAN_32B(reinterpret_cast<sgx_ec256_signature_t *>(signature)->y);
*signature_out_size = sizeof(sgx_ec256_signature_t);
ae_ret = AE_SUCCESS;
ret_point:
(void)memset_s(&ec_prv_key, sizeof(ec_prv_key),0,sizeof(ec_prv_key));
if(handle!=NULL){
sgx_ecc256_close_context(handle);
}
if(AE_SUCCESS != ae_ret){
(void)memset_s(signature, signature_buf_size, 0, sizeof(sgx_ec256_signature_t));
}
return ae_ret;
}