Angie Chinchilla 9441de4c38 Initial release of Intel SGX for Linux.
This release is used in conjunction with the linux-sgx-driver Intial release:
https://github.com/01org/linux-sgx-driver
commit-id: 0e865ce5e6b297a787bcdc12d98bada8174be6d7

Intel-id: 33399

Signed-off-by: Angie Chinchilla <angie.v.chinchilla@intel.com>
2016-06-23 18:51:53 -04:00

374 lines
13 KiB
C++

/*
* Copyright (C) 2011-2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
// Enclave1.cpp : Defines the exported functions for the .so application
#include "sgx_eid.h"
#include "Enclave1_t.h"
#include "EnclaveMessageExchange.h"
#include "error_codes.h"
#include "Utility_E1.h"
#include "sgx_thread.h"
#include "sgx_dh.h"
#include <map>
#define UNUSED(val) (void)(val)
std::map<sgx_enclave_id_t, dh_session_t>g_src_session_info_map;
static uint32_t e1_foo1_wrapper(ms_in_msg_exchange_t *ms, size_t param_lenth, char** resp_buffer, size_t* resp_length);
//Function pointer table containing the list of functions that the enclave exposes
const struct {
size_t num_funcs;
const void* table[1];
} func_table = {
1,
{
(const void*)e1_foo1_wrapper,
}
};
//Makes use of the sample code function to establish a secure channel with the destination enclave (Test Vector)
uint32_t test_create_session(sgx_enclave_id_t src_enclave_id,
sgx_enclave_id_t dest_enclave_id)
{
ATTESTATION_STATUS ke_status = SUCCESS;
dh_session_t dest_session_info;
//Core reference code function for creating a session
ke_status = create_session(src_enclave_id, dest_enclave_id, &dest_session_info);
//Insert the session information into the map under the corresponding destination enclave id
if(ke_status == SUCCESS)
{
g_src_session_info_map.insert(std::pair<sgx_enclave_id_t, dh_session_t>(dest_enclave_id, dest_session_info));
}
memset(&dest_session_info, 0, sizeof(dh_session_t));
return ke_status;
}
//Makes use of the sample code function to do an enclave to enclave call (Test Vector)
uint32_t test_enclave_to_enclave_call(sgx_enclave_id_t src_enclave_id,
sgx_enclave_id_t dest_enclave_id)
{
ATTESTATION_STATUS ke_status = SUCCESS;
uint32_t var1,var2;
uint32_t target_fn_id, msg_type;
char* marshalled_inp_buff;
size_t marshalled_inp_buff_len;
char* out_buff;
size_t out_buff_len;
dh_session_t *dest_session_info;
size_t max_out_buff_size;
char* retval;
var1 = 0x4;
var2 = 0x5;
target_fn_id = 0;
msg_type = ENCLAVE_TO_ENCLAVE_CALL;
max_out_buff_size = 50;
//Marshals the input parameters for calling function foo1 in Enclave2 into a input buffer
ke_status = marshal_input_parameters_e2_foo1(target_fn_id, msg_type, var1, var2, &marshalled_inp_buff, &marshalled_inp_buff_len);
if(ke_status != SUCCESS)
{
return ke_status;
}
//Search the map for the session information associated with the destination enclave id of Enclave2 passed in
std::map<sgx_enclave_id_t, dh_session_t>::iterator it = g_src_session_info_map.find(dest_enclave_id);
if(it != g_src_session_info_map.end())
{
dest_session_info = &it->second;
}
else
{
SAFE_FREE(marshalled_inp_buff);
return INVALID_SESSION;
}
//Core Reference Code function
ke_status = send_request_receive_response(src_enclave_id, dest_enclave_id, dest_session_info, marshalled_inp_buff,
marshalled_inp_buff_len, max_out_buff_size, &out_buff, &out_buff_len);
if(ke_status != SUCCESS)
{
SAFE_FREE(marshalled_inp_buff);
SAFE_FREE(out_buff);
return ke_status;
}
//Un-marshal the return value and output parameters from foo1 of Enclave 2
ke_status = unmarshal_retval_and_output_parameters_e2_foo1(out_buff, &retval);
if(ke_status != SUCCESS)
{
SAFE_FREE(marshalled_inp_buff);
SAFE_FREE(out_buff);
return ke_status;
}
SAFE_FREE(marshalled_inp_buff);
SAFE_FREE(out_buff);
SAFE_FREE(retval);
return SUCCESS;
}
//Makes use of the sample code function to do a generic secret message exchange (Test Vector)
uint32_t test_message_exchange(sgx_enclave_id_t src_enclave_id,
sgx_enclave_id_t dest_enclave_id)
{
ATTESTATION_STATUS ke_status = SUCCESS;
uint32_t target_fn_id, msg_type;
char* marshalled_inp_buff;
size_t marshalled_inp_buff_len;
char* out_buff;
size_t out_buff_len;
dh_session_t *dest_session_info;
size_t max_out_buff_size;
char* secret_response;
uint32_t secret_data;
target_fn_id = 0;
msg_type = MESSAGE_EXCHANGE;
max_out_buff_size = 50;
secret_data = 0x12345678; //Secret Data here is shown only for purpose of demonstration.
//Marshals the secret data into a buffer
ke_status = marshal_message_exchange_request(target_fn_id, msg_type, secret_data, &marshalled_inp_buff, &marshalled_inp_buff_len);
if(ke_status != SUCCESS)
{
return ke_status;
}
//Search the map for the session information associated with the destination enclave id passed in
std::map<sgx_enclave_id_t, dh_session_t>::iterator it = g_src_session_info_map.find(dest_enclave_id);
if(it != g_src_session_info_map.end())
{
dest_session_info = &it->second;
}
else
{
SAFE_FREE(marshalled_inp_buff);
return INVALID_SESSION;
}
//Core Reference Code function
ke_status = send_request_receive_response(src_enclave_id, dest_enclave_id, dest_session_info, marshalled_inp_buff,
marshalled_inp_buff_len, max_out_buff_size, &out_buff, &out_buff_len);
if(ke_status != SUCCESS)
{
SAFE_FREE(marshalled_inp_buff);
SAFE_FREE(out_buff);
return ke_status;
}
//Un-marshal the secret response data
ke_status = umarshal_message_exchange_response(out_buff, &secret_response);
if(ke_status != SUCCESS)
{
SAFE_FREE(marshalled_inp_buff);
SAFE_FREE(out_buff);
return ke_status;
}
SAFE_FREE(marshalled_inp_buff);
SAFE_FREE(out_buff);
SAFE_FREE(secret_response);
return SUCCESS;
}
//Makes use of the sample code function to close a current session
uint32_t test_close_session(sgx_enclave_id_t src_enclave_id,
sgx_enclave_id_t dest_enclave_id)
{
dh_session_t dest_session_info;
ATTESTATION_STATUS ke_status = SUCCESS;
//Search the map for the session information associated with the destination enclave id passed in
std::map<sgx_enclave_id_t, dh_session_t>::iterator it = g_src_session_info_map.find(dest_enclave_id);
if(it != g_src_session_info_map.end())
{
dest_session_info = it->second;
}
else
{
return NULL;
}
//Core reference code function for closing a session
ke_status = close_session(src_enclave_id, dest_enclave_id);
//Erase the session information associated with the destination enclave id
g_src_session_info_map.erase(dest_enclave_id);
return ke_status;
}
//Function that is used to verify the trust of the other enclave
//Each enclave can have its own way verifying the peer enclave identity
extern "C" uint32_t verify_peer_enclave_trust(sgx_dh_session_enclave_identity_t* peer_enclave_identity)
{
if(!peer_enclave_identity)
{
return INVALID_PARAMETER_ERROR;
}
if(peer_enclave_identity->isv_prod_id != 0 || !(peer_enclave_identity->attributes.flags & SGX_FLAGS_INITTED))
// || peer_enclave_identity->attributes.xfrm !=3)// || peer_enclave_identity->mr_signer != xx //TODO: To be hardcoded with values to check
{
return ENCLAVE_TRUST_ERROR;
}
else
{
return SUCCESS;
}
}
//Dispatcher function that calls the approriate enclave function based on the function id
//Each enclave can have its own way of dispatching the calls from other enclave
extern "C" uint32_t enclave_to_enclave_call_dispatcher(char* decrypted_data,
size_t decrypted_data_length,
char** resp_buffer,
size_t* resp_length)
{
ms_in_msg_exchange_t *ms;
uint32_t (*fn1)(ms_in_msg_exchange_t *ms, size_t, char**, size_t*);
if(!decrypted_data || !resp_length)
{
return INVALID_PARAMETER_ERROR;
}
ms = (ms_in_msg_exchange_t *)decrypted_data;
if(ms->target_fn_id >= func_table.num_funcs)
{
return INVALID_PARAMETER_ERROR;
}
fn1 = (uint32_t (*)(ms_in_msg_exchange_t*, size_t, char**, size_t*))func_table.table[ms->target_fn_id];
return fn1(ms, decrypted_data_length, resp_buffer, resp_length);
}
//Operates on the input secret and generates the output secret
uint32_t get_message_exchange_response(uint32_t inp_secret_data)
{
uint32_t secret_response;
//User should use more complex encryption method to protect their secret, below is just a simple example
secret_response = inp_secret_data & 0x11111111;
return secret_response;
}
//Generates the response from the request message
extern "C" uint32_t message_exchange_response_generator(char* decrypted_data,
char** resp_buffer,
size_t* resp_length)
{
ms_in_msg_exchange_t *ms;
uint32_t inp_secret_data;
uint32_t out_secret_data;
if(!decrypted_data || !resp_length)
{
return INVALID_PARAMETER_ERROR;
}
ms = (ms_in_msg_exchange_t *)decrypted_data;
if(umarshal_message_exchange_request(&inp_secret_data,ms) != SUCCESS)
return ATTESTATION_ERROR;
out_secret_data = get_message_exchange_response(inp_secret_data);
if(marshal_message_exchange_response(resp_buffer, resp_length, out_secret_data) != SUCCESS)
return MALLOC_ERROR;
return SUCCESS;
}
static uint32_t e1_foo1(external_param_struct_t *p_struct_var)
{
if(!p_struct_var)
{
return INVALID_PARAMETER_ERROR;
}
(p_struct_var->var1)++;
(p_struct_var->var2)++;
(p_struct_var->p_internal_struct->ivar1)++;
(p_struct_var->p_internal_struct->ivar2)++;
return (p_struct_var->var1 + p_struct_var->var2 + p_struct_var->p_internal_struct->ivar1 + p_struct_var->p_internal_struct->ivar2);
}
//Function which is executed on request from the source enclave
static uint32_t e1_foo1_wrapper(ms_in_msg_exchange_t *ms,
size_t param_lenth,
char** resp_buffer,
size_t* resp_length)
{
UNUSED(param_lenth);
uint32_t ret;
size_t len_data, len_ptr_data;
external_param_struct_t *p_struct_var;
internal_param_struct_t internal_struct_var;
if(!ms || !resp_length)
{
return INVALID_PARAMETER_ERROR;
}
p_struct_var = (external_param_struct_t*)malloc(sizeof(external_param_struct_t));
if(!p_struct_var)
return MALLOC_ERROR;
p_struct_var->p_internal_struct = &internal_struct_var;
if(unmarshal_input_parameters_e1_foo1(p_struct_var, ms) != SUCCESS)//can use the stack
{
SAFE_FREE(p_struct_var);
return ATTESTATION_ERROR;
}
ret = e1_foo1(p_struct_var);
len_data = sizeof(external_param_struct_t) - sizeof(p_struct_var->p_internal_struct);
len_ptr_data = sizeof(internal_struct_var);
if(marshal_retval_and_output_parameters_e1_foo1(resp_buffer, resp_length, ret, p_struct_var, len_data, len_ptr_data) != SUCCESS)
{
SAFE_FREE(p_struct_var);
return MALLOC_ERROR;
}
SAFE_FREE(p_struct_var);
return SUCCESS;
}