corda/src/compile.cpp

4678 lines
107 KiB
C++

#include "machine.h"
#include "util.h"
#include "vector.h"
#include "process.h"
#include "assembler.h"
#include "compiler.h"
#include "x86.h"
using namespace vm;
extern "C" uint64_t
vmInvoke(void* thread, void* function, void* stack, unsigned stackSize,
unsigned returnType);
extern "C" void
vmCall();
namespace {
const bool Verbose = true;
const bool DebugNatives = false;
const bool DebugTraces = false;
const bool DebugFrameMaps = false;
const bool CheckArrayBounds = true;
class MyThread: public Thread {
public:
class CallTrace {
public:
CallTrace(MyThread* t):
t(t),
ip(t->ip),
base(t->base),
stack(t->stack),
next(t->trace)
{
t->trace = this;
t->ip = 0;
t->base = 0;
t->stack = 0;
}
~CallTrace() {
t->stack = stack;
t->base = base;
t->ip = ip;
t->trace = next;
}
MyThread* t;
void* ip;
void* base;
void* stack;
CallTrace* next;
};
MyThread(Machine* m, object javaThread, Thread* parent):
Thread(m, javaThread, parent),
ip(0),
base(0),
stack(0),
trace(0),
reference(0)
{ }
void* ip;
void* base;
void* stack;
CallTrace* trace;
Reference* reference;
};
object
resolveTarget(MyThread* t, void* stack, object method)
{
if (method) {
unsigned parameterFootprint = methodParameterFootprint(t, method);
object class_ = objectClass
(t, reinterpret_cast<object*>(stack)[parameterFootprint]);
if (classVmFlags(t, class_) & BootstrapFlag) {
PROTECT(t, method);
PROTECT(t, class_);
resolveClass(t, className(t, class_));
if (UNLIKELY(t->exception)) return 0;
}
if (classFlags(t, methodClass(t, method)) & ACC_INTERFACE) {
return findInterfaceMethod(t, method, class_);
} else {
return findMethod(t, method, class_);
}
}
return method;
}
object
findTraceNode(MyThread* t, void* address);
void
insertTraceNode(MyThread* t, object node);
class MyStackWalker: public Processor::StackWalker {
public:
class MyProtector: public Thread::Protector {
public:
MyProtector(MyStackWalker* walker):
Protector(walker->t), walker(walker)
{ }
virtual void visit(Heap::Visitor* v) {
v->visit(&(walker->node));
v->visit(&(walker->nativeMethod));
}
MyStackWalker* walker;
};
MyStackWalker(MyThread* t):
t(t),
base(t->base),
stack(t->stack),
trace(t->trace),
node(t->ip ? findTraceNode(t, t->ip) :
(stack ? findTraceNode(t, *static_cast<void**>(stack)) :
0)),
nativeMethod(resolveNativeMethod(t, stack, node)),
protector(this)
{ }
MyStackWalker(MyStackWalker* w):
t(w->t),
base(w->base),
stack(w->stack),
trace(w->trace),
node(w->node),
nativeMethod(w->nativeMethod),
protector(this)
{ }
static object resolveNativeMethod(MyThread* t, void* stack, object node) {
if (node) {
object target = traceNodeTarget(t, node);
if (traceNodeVirtualCall(t, node)) {
target = resolveTarget(t, stack, target);
}
if (target and methodFlags(t, target) & ACC_NATIVE) {
return target;
}
}
return 0;
}
virtual void walk(Processor::StackVisitor* v) {
if (stack == 0) {
return;
}
if (not v->visit(this)) {
return;
}
for (MyStackWalker it(this); it.next();) {
MyStackWalker walker(it);
if (not v->visit(&walker)) {
break;
}
}
}
bool next() {
if (nativeMethod) {
nativeMethod = 0;
} else {
stack = static_cast<void**>(base) + 1;
base = *static_cast<void**>(base);
node = findTraceNode(t, *static_cast<void**>(stack));
if (node == 0) {
if (trace and trace->stack) {
base = trace->base;
stack = static_cast<void**>(trace->stack);
trace = trace->next;
node = findTraceNode(t, *static_cast<void**>(stack));
nativeMethod = resolveNativeMethod(t, stack, node);
} else {
return false;
}
}
}
return true;
}
virtual object method() {
if (nativeMethod) {
return nativeMethod;
} else {
return traceNodeMethod(t, node);
}
}
virtual int ip() {
if (nativeMethod) {
return 0;
} else {
intptr_t start = reinterpret_cast<intptr_t>
(&singletonValue(t, methodCompiled(t, traceNodeMethod(t, node)), 0));
return traceNodeAddress(t, node) - start;
}
}
virtual unsigned count() {
class Visitor: public Processor::StackVisitor {
public:
Visitor(): count(0) { }
virtual bool visit(Processor::StackWalker*) {
++ count;
return true;
}
unsigned count;
} v;
MyStackWalker walker(this);
walker.walk(&v);
return v.count;
}
MyThread* t;
void* base;
void* stack;
MyThread::CallTrace* trace;
object node;
object nativeMethod;
MyProtector protector;
};
int
localOffset(MyThread* t, int v, object method)
{
int parameterFootprint = methodParameterFootprint(t, method) * BytesPerWord;
v *= BytesPerWord;
if (v < parameterFootprint) {
return (parameterFootprint - v - BytesPerWord) + (BytesPerWord * 2);
} else {
return -(v + BytesPerWord - parameterFootprint);
}
}
inline object*
localObject(MyThread* t, void* base, object method, unsigned index)
{
return reinterpret_cast<object*>
(static_cast<uint8_t*>(base) + localOffset(t, index, method));
}
class PoolElement {
public:
PoolElement(object value, Promise* address, PoolElement* next):
value(value), address(address), next(next)
{ }
object value;
Promise* address;
PoolElement* next;
};
class Context;
class TraceElement: public TraceHandler {
public:
TraceElement(Context* context, object target,
bool virtualCall, TraceElement* next):
context(context),
address(0),
target(target),
virtualCall(virtualCall),
next(next)
{ }
virtual void handleTrace(Promise* address) {
if (this->address == 0) {
this->address = address;
}
}
Context* context;
Promise* address;
object target;
bool virtualCall;
TraceElement* next;
uintptr_t map[0];
};
enum Event {
PushEvent,
PopEvent,
IpEvent,
MarkEvent,
ClearEvent,
TraceEvent
};
unsigned
localSize(MyThread* t, object method)
{
unsigned size = codeMaxLocals(t, methodCode(t, method));
if ((methodFlags(t, method) & (ACC_SYNCHRONIZED | ACC_STATIC))
== ACC_SYNCHRONIZED)
{
++ size;
}
return size;
}
unsigned
frameSize(MyThread* t, object method)
{
return localSize(t, method) + codeMaxStack(t, methodCode(t, method));
}
unsigned
frameMapSizeInWords(MyThread* t, object method)
{
return ceiling(frameSize(t, method), BitsPerWord) * BytesPerWord;
}
uint16_t*
makeVisitTable(MyThread* t, Zone* zone, object method)
{
unsigned size = codeLength(t, methodCode(t, method)) * 2;
uint16_t* table = static_cast<uint16_t*>(zone->allocate(size));
memset(table, 0, size);
return table;
}
uintptr_t*
makeRootTable(MyThread* t, Zone* zone, object method)
{
unsigned size = frameMapSizeInWords(t, method)
* codeLength(t, methodCode(t, method))
* BytesPerWord;
uintptr_t* table = static_cast<uintptr_t*>(zone->allocate(size));
memset(table, 0xFF, size);
return table;
}
class Context {
public:
class MyProtector: public Thread::Protector {
public:
MyProtector(Context* c): Protector(c->thread), c(c) { }
virtual void visit(Heap::Visitor* v) {
v->visit(&(c->method));
for (PoolElement* p = c->objectPool; p; p = p->next) {
v->visit(&(p->value));
}
for (TraceElement* p = c->traceLog; p; p = p->next) {
v->visit(&(p->target));
}
}
Context* c;
};
Context(MyThread* t, object method, void* indirection):
thread(t),
zone(t->m->system, t->m->heap, false, 16 * 1024),
assembler(makeAssembler(t->m->system, t->m->heap, &zone)),
compiler(makeCompiler(t->m->system, assembler, &zone)),
method(method),
indirection(indirection),
objectPool(0),
traceLog(0),
visitTable(makeVisitTable(t, &zone, method)),
rootTable(makeRootTable(t, &zone, method)),
eventLog(t->m->system, t->m->heap, 1024),
protector(this)
{ }
Context(MyThread* t):
thread(t),
zone(t->m->system, t->m->heap, false, LikelyPageSizeInBytes),
assembler(makeAssembler(t->m->system, t->m->heap, &zone)),
compiler(0),
method(0),
indirection(0),
objectPool(0),
traceLog(0),
visitTable(0),
rootTable(0),
eventLog(t->m->system, t->m->heap, 0),
protector(this)
{ }
~Context() {
if (compiler) compiler->dispose();
assembler->dispose();
}
MyThread* thread;
Zone zone;
Assembler* assembler;
Compiler* compiler;
object method;
void* indirection;
PoolElement* objectPool;
TraceElement* traceLog;
uint16_t* visitTable;
uintptr_t* rootTable;
Vector eventLog;
MyProtector protector;
};
class Frame {
public:
enum StackType {
Integer,
Long,
Object
};
Frame(Context* context, uint8_t* stackMap):
context(context),
t(context->thread),
c(context->compiler),
stackMap(stackMap),
ip(0),
sp(localSize()),
level(0)
{
memset(stackMap, 0, codeMaxStack(t, methodCode(t, context->method)));
}
Frame(Frame* f, uint8_t* stackMap):
context(f->context),
t(context->thread),
c(context->compiler),
stackMap(stackMap),
ip(f->ip),
sp(f->sp),
level(f->level + 1)
{
c->pushState();
memcpy(stackMap, f->stackMap, codeMaxStack
(t, methodCode(t, context->method)));
if (level > 1) {
context->eventLog.append(PushEvent);
}
}
~Frame() {
if (level > 1 and t->exception == 0) {
c->popState();
context->eventLog.append(PopEvent);
}
}
Compiler::Operand* append(object o) {
Promise* p = c->poolAppend(0);
context->objectPool = new
(context->zone.allocate(sizeof(PoolElement)))
PoolElement(o, p, context->objectPool);
return c->address(p);
}
unsigned localSize() {
return ::localSize(t, context->method);
}
unsigned stackSize() {
return codeMaxStack(t, methodCode(t, context->method));
}
unsigned frameSize() {
return localSize() + stackSize();
}
void set(unsigned index, uint8_t type) {
assert(t, index < frameSize());
if (type == Object) {
context->eventLog.append(MarkEvent);
context->eventLog.append2(index);
} else {
context->eventLog.append(ClearEvent);
context->eventLog.append2(index);
}
int si = index - localSize();
if (si >= 0) {
stackMap[si] = type;
}
}
uint8_t get(unsigned index) {
assert(t, index < frameSize());
int si = index - localSize();
assert(t, si >= 0);
return stackMap[si];
}
void pushedInt() {
assert(t, sp + 1 <= frameSize());
set(sp++, Integer);
}
void pushedLong() {
assert(t, sp + 2 <= frameSize());
set(sp++, Long);
set(sp++, Long);
}
void pushedObject() {
assert(t, sp + 1 <= frameSize());
set(sp++, Object);
}
void popped(unsigned count) {
assert(t, sp >= count);
assert(t, sp - count >= localSize());
while (count) {
set(--sp, Integer);
-- count;
}
}
void poppedInt() {
assert(t, sp >= 1);
assert(t, sp - 1 >= localSize());
assert(t, get(sp - 1) == Integer);
-- sp;
}
void poppedLong() {
assert(t, sp >= 1);
assert(t, sp - 2 >= localSize());
assert(t, get(sp - 1) == Long);
assert(t, get(sp - 2) == Long);
sp -= 2;
}
void poppedObject() {
assert(t, sp >= 1);
assert(t, sp - 1 >= localSize());
assert(t, get(sp - 1) == Object);
set(--sp, Integer);
}
void storedInt(unsigned index) {
assert(t, index < localSize());
set(index, Integer);
}
void storedLong(unsigned index) {
assert(t, index + 1 < localSize());
set(index, Long);
set(index + 1, Long);
}
void storedObject(unsigned index) {
assert(t, index < localSize());
set(index, Object);
}
void dupped() {
assert(t, sp + 1 <= frameSize());
assert(t, sp - 1 >= localSize());
set(sp++, get(sp - 1));
}
void duppedX1() {
assert(t, sp + 1 <= frameSize());
assert(t, sp - 2 >= localSize());
uint8_t b2 = get(sp - 2);
uint8_t b1 = get(sp - 1);
set(sp - 1, b2);
set(sp - 2, b1);
set(sp , b1);
++ sp;
}
void duppedX2() {
assert(t, sp + 1 <= frameSize());
assert(t, sp - 3 >= localSize());
uint8_t b3 = get(sp - 3);
uint8_t b2 = get(sp - 2);
uint8_t b1 = get(sp - 1);
set(sp - 2, b3);
set(sp - 1, b2);
set(sp - 3, b1);
set(sp , b1);
++ sp;
}
void dupped2() {
assert(t, sp + 2 <= frameSize());
assert(t, sp - 2 >= localSize());
uint8_t b2 = get(sp - 2);
uint8_t b1 = get(sp - 1);
set(sp, b2);
set(sp + 1, b1);
sp += 2;
}
void dupped2X1() {
assert(t, sp + 2 <= frameSize());
assert(t, sp - 3 >= localSize());
uint8_t b3 = get(sp - 3);
uint8_t b2 = get(sp - 2);
uint8_t b1 = get(sp - 1);
set(sp - 1, b3);
set(sp - 3, b2);
set(sp , b2);
set(sp - 2, b1);
set(sp + 1, b1);
sp += 2;
}
void dupped2X2() {
assert(t, sp + 2 <= frameSize());
assert(t, sp - 4 >= localSize());
uint8_t b4 = get(sp - 4);
uint8_t b3 = get(sp - 3);
uint8_t b2 = get(sp - 2);
uint8_t b1 = get(sp - 1);
set(sp - 2, b4);
set(sp - 1, b3);
set(sp - 4, b2);
set(sp , b2);
set(sp - 3, b1);
set(sp + 1, b1);
sp += 2;
}
void swapped() {
assert(t, sp - 2 >= localSize());
uint8_t saved = get(sp - 1);
set(sp - 1, get(sp - 2));
set(sp - 2, saved);
}
Compiler::Operand* machineIp(unsigned logicalIp) {
return c->promiseConstant(c->machineIp(logicalIp));
}
void visitLogicalIp(unsigned ip) {
context->eventLog.append(IpEvent);
context->eventLog.append2(ip);
}
void startLogicalIp(unsigned ip) {
c->startLogicalIp(ip);
this->ip = ip;
}
void pushInt(Compiler::Operand* o) {
c->push(4, o);
pushedInt();
}
void pushAddress(Compiler::Operand* o) {
c->push(BytesPerWord, o);
pushedInt();
}
void pushObject(Compiler::Operand* o) {
c->push(BytesPerWord, o);
pushedObject();
}
void pushObject() {
c->pushed(1);
pushedObject();
}
void pushLongQuiet(Compiler::Operand* o) {
if (BytesPerWord == 8) {
c->pushed(1);
}
c->push(8, o);
}
void pushLong(Compiler::Operand* o) {
pushLongQuiet(o);
pushedLong();
}
void pop(unsigned count) {
popped(count);
c->popped(count);
}
Compiler::Operand* popInt() {
poppedInt();
return c->pop(4);
}
Compiler::Operand* popLongQuiet() {
Compiler::Operand* r = c->pop(8);
if (BytesPerWord == 8) {
c->popped(1);
}
return r;
}
Compiler::Operand* popLong() {
poppedLong();
return popLongQuiet();
}
Compiler::Operand* popObject() {
poppedObject();
return c->pop(BytesPerWord);
}
void loadInt(unsigned index) {
assert(t, index < localSize());
pushInt
(c->load
(4, c->memory(c->base(), localOffset(t, index, context->method))));
}
void loadLong(unsigned index) {
assert(t, index < static_cast<unsigned>(localSize() - 1));
pushLong
(c->load
(8, c->memory(c->base(), localOffset(t, index + 1, context->method))));
}
void loadObject(unsigned index) {
assert(t, index < localSize());
pushObject
(c->load
(BytesPerWord,
c->memory(c->base(), localOffset(t, index, context->method))));
}
void storeInt(unsigned index) {
c->store
(4, popInt(), c->memory
(c->base(), localOffset(t, index, context->method)));
storedInt(index);
}
void storeLong(unsigned index) {
c->store
(8, popLong(), c->memory
(c->base(), localOffset(t, index + 1, context->method)));
storedLong(index);
}
void storeObject(unsigned index) {
c->store
(BytesPerWord, popObject(), c->memory
(c->base(), localOffset(t, index, context->method)));
storedObject(index);
}
void storeObjectOrAddress(unsigned index) {
c->store
(BytesPerWord, c->pop(BytesPerWord), c->memory
(c->base(), localOffset(t, index, context->method)));
assert(t, sp >= 1);
assert(t, sp - 1 >= localSize());
if (get(sp - 1) == Object) {
storedObject(index);
} else {
storedInt(index);
}
popped(1);
}
void dup() {
Compiler::Operand* s0 = c->pop(BytesPerWord);
c->push(BytesPerWord, s0);
c->push(BytesPerWord, s0);
dupped();
}
void dupX1() {
Compiler::Operand* s0 = c->pop(BytesPerWord);
Compiler::Operand* s1 = c->pop(BytesPerWord);
c->push(BytesPerWord, s0);
c->push(BytesPerWord, s1);
c->push(BytesPerWord, s0);
duppedX1();
}
void dupX2() {
Compiler::Operand* s0 = c->pop(BytesPerWord);
if (get(sp - 2) == Long) {
Compiler::Operand* s1 = popLongQuiet();
c->push(BytesPerWord, s0);
pushLongQuiet(s1);
c->push(BytesPerWord, s0);
} else {
Compiler::Operand* s1 = c->pop(BytesPerWord);
Compiler::Operand* s2 = c->pop(BytesPerWord);
c->push(BytesPerWord, s0);
c->push(BytesPerWord, s2);
c->push(BytesPerWord, s1);
c->push(BytesPerWord, s0);
}
duppedX2();
}
void dup2() {
if (get(sp - 1) == Long) {
Compiler::Operand* s0 = popLongQuiet();
pushLongQuiet(s0);
pushLongQuiet(s0);
} else {
Compiler::Operand* s0 = c->pop(BytesPerWord);
Compiler::Operand* s1 = c->pop(BytesPerWord);
c->push(BytesPerWord, s1);
c->push(BytesPerWord, s0);
c->push(BytesPerWord, s1);
c->push(BytesPerWord, s0);
}
dupped2();
}
void dup2X1() {
if (get(sp - 1) == Long) {
Compiler::Operand* s0 = popLongQuiet();
Compiler::Operand* s1 = c->pop(BytesPerWord);
pushLongQuiet(s0);
c->push(BytesPerWord, s1);
pushLongQuiet(s0);
} else {
Compiler::Operand* s0 = c->pop(BytesPerWord);
Compiler::Operand* s1 = c->pop(BytesPerWord);
Compiler::Operand* s2 = c->pop(BytesPerWord);
c->push(BytesPerWord, s1);
c->push(BytesPerWord, s0);
c->push(BytesPerWord, s2);
c->push(BytesPerWord, s1);
c->push(BytesPerWord, s0);
}
dupped2X1();
}
void dup2X2() {
if (get(sp - 1) == Long) {
Compiler::Operand* s0 = popLongQuiet();
if (get(sp - 3) == Long) {
Compiler::Operand* s1 = popLongQuiet();
pushLongQuiet(s0);
pushLongQuiet(s1);
pushLongQuiet(s0);
} else {
Compiler::Operand* s1 = c->pop(BytesPerWord);
Compiler::Operand* s2 = c->pop(BytesPerWord);
pushLongQuiet(s0);
c->push(BytesPerWord, s2);
c->push(BytesPerWord, s1);
pushLongQuiet(s0);
}
} else {
Compiler::Operand* s0 = c->pop(BytesPerWord);
Compiler::Operand* s1 = c->pop(BytesPerWord);
Compiler::Operand* s2 = c->pop(BytesPerWord);
Compiler::Operand* s3 = c->pop(BytesPerWord);
c->push(BytesPerWord, s1);
c->push(BytesPerWord, s0);
c->push(BytesPerWord, s3);
c->push(BytesPerWord, s2);
c->push(BytesPerWord, s1);
c->push(BytesPerWord, s0);
}
dupped2X2();
}
void swap() {
Compiler::Operand* s0 = c->pop(BytesPerWord);
Compiler::Operand* s1 = c->pop(BytesPerWord);
c->push(BytesPerWord, s0);
c->push(BytesPerWord, s1);
swapped();
}
TraceElement* trace(object target, bool virtualCall) {
unsigned mapSize = frameMapSizeInWords(t, context->method);
TraceElement* e = context->traceLog = new
(context->zone.allocate(sizeof(TraceElement) + (mapSize * BytesPerWord)))
TraceElement(context, target, virtualCall, context->traceLog);
context->eventLog.append(TraceEvent);
context->eventLog.appendAddress(e);
return e;
}
Context* context;
MyThread* t;
Compiler* c;
uint8_t* stackMap;
unsigned ip;
unsigned sp;
unsigned level;
};
unsigned
savedTargetIndex(MyThread* t, object method)
{
return codeMaxLocals(t, methodCode(t, method));
}
void
findUnwindTarget(MyThread* t, void** targetIp, void** targetBase,
void** targetStack)
{
void* ip = t->ip;
void* base = t->base;
void** stack = static_cast<void**>(t->stack);
if (ip) {
t->ip = 0;
} else {
ip = *stack;
}
*targetIp = 0;
while (*targetIp == 0) {
object node = findTraceNode(t, ip);
if (node) {
object method = traceNodeMethod(t, node);
PROTECT(t, method);
uint8_t* compiled = reinterpret_cast<uint8_t*>
(&singletonValue(t, methodCompiled(t, method), 0));
ExceptionHandler* handler = findExceptionHandler
(t, method, difference(ip, compiled));
if (handler) {
unsigned parameterFootprint = methodParameterFootprint(t, method);
unsigned localFootprint = localSize(t, method);
stack = static_cast<void**>(base)
- (localFootprint - parameterFootprint);
*(--stack) = t->exception;
t->exception = 0;
*targetIp = compiled + exceptionHandlerIp(handler);
*targetBase = base;
*targetStack = stack;
} else {
if (methodFlags(t, method) & ACC_SYNCHRONIZED) {
object lock;
if (methodFlags(t, method) & ACC_STATIC) {
lock = methodClass(t, method);
} else {
lock = *localObject(t, base, method, savedTargetIndex(t, method));
}
release(t, lock);
}
stack = static_cast<void**>(base) + 1;
ip = *stack;
base = *static_cast<void**>(base);
}
} else {
*targetIp = ip;
*targetBase = base;
*targetStack = stack + 1;
}
}
}
void NO_RETURN
unwind(MyThread* t)
{
void* ip;
void* base;
void* stack;
findUnwindTarget(t, &ip, &base, &stack);
vmJump(ip, base, stack, t);
}
void FORCE_ALIGN
tryInitClass(MyThread* t, object class_)
{
initClass(t, class_);
if (UNLIKELY(t->exception)) unwind(t);
}
void* FORCE_ALIGN
findInterfaceMethodFromInstance(MyThread* t, object method, object instance)
{
if (instance) {
return &singletonValue
(t, methodCompiled
(t, findInterfaceMethod(t, method, objectClass(t, instance))), 0);
} else {
t->exception = makeNullPointerException(t);
unwind(t);
}
}
intptr_t
compareDoublesG(uint64_t bi, uint64_t ai)
{
double a = bitsToDouble(ai);
double b = bitsToDouble(bi);
if (a < b) {
return -1;
} else if (a > b) {
return 1;
} else if (a == b) {
return 0;
} else {
return 1;
}
}
intptr_t
compareDoublesL(uint64_t bi, uint64_t ai)
{
double a = bitsToDouble(ai);
double b = bitsToDouble(bi);
if (a < b) {
return -1;
} else if (a > b) {
return 1;
} else if (a == b) {
return 0;
} else {
return -1;
}
}
intptr_t
compareFloatsG(uint32_t bi, uint32_t ai)
{
float a = bitsToFloat(ai);
float b = bitsToFloat(bi);
if (a < b) {
return -1;
} else if (a > b) {
return 1;
} else if (a == b) {
return 0;
} else {
return 1;
}
}
intptr_t
compareFloatsL(uint32_t bi, uint32_t ai)
{
float a = bitsToFloat(ai);
float b = bitsToFloat(bi);
if (a < b) {
return -1;
} else if (a > b) {
return 1;
} else if (a == b) {
return 0;
} else {
return -1;
}
}
uint64_t
addDouble(uint64_t b, uint64_t a)
{
return doubleToBits(bitsToDouble(a) + bitsToDouble(b));
}
uint64_t
subtractDouble(uint64_t b, uint64_t a)
{
return doubleToBits(bitsToDouble(a) - bitsToDouble(b));
}
uint64_t
multiplyDouble(uint64_t b, uint64_t a)
{
return doubleToBits(bitsToDouble(a) * bitsToDouble(b));
}
uint64_t
divideDouble(uint64_t b, uint64_t a)
{
return doubleToBits(bitsToDouble(a) / bitsToDouble(b));
}
uint64_t
moduloDouble(uint64_t b, uint64_t a)
{
return doubleToBits(fmod(bitsToDouble(a), bitsToDouble(b)));
}
uint64_t
negateDouble(uint64_t a)
{
return doubleToBits(- bitsToDouble(a));
}
uint32_t
doubleToFloat(int64_t a)
{
return floatToBits(static_cast<float>(bitsToDouble(a)));
}
int32_t
doubleToInt(int64_t a)
{
return static_cast<int32_t>(bitsToDouble(a));
}
int64_t
doubleToLong(int64_t a)
{
return static_cast<int64_t>(bitsToDouble(a));
}
uint32_t
addFloat(uint32_t b, uint32_t a)
{
return floatToBits(bitsToFloat(a) + bitsToFloat(b));
}
uint32_t
subtractFloat(uint32_t b, uint32_t a)
{
return floatToBits(bitsToFloat(a) - bitsToFloat(b));
}
uint32_t
multiplyFloat(uint32_t b, uint32_t a)
{
return floatToBits(bitsToFloat(a) * bitsToFloat(b));
}
uint32_t
divideFloat(uint32_t b, uint32_t a)
{
return floatToBits(bitsToFloat(a) / bitsToFloat(b));
}
uint32_t
moduloFloat(uint32_t b, uint32_t a)
{
return floatToBits(fmod(bitsToFloat(a), bitsToFloat(b)));
}
uint32_t
negateFloat(uint32_t a)
{
return floatToBits(- bitsToFloat(a));
}
int64_t
divideLong(int64_t b, int64_t a)
{
return a / b;
}
int64_t
moduloLong(int64_t b, int64_t a)
{
return a % b;
}
uint64_t
floatToDouble(int32_t a)
{
return doubleToBits(static_cast<double>(bitsToFloat(a)));
}
int32_t
floatToInt(int32_t a)
{
return static_cast<int32_t>(bitsToFloat(a));
}
int64_t
floatToLong(int32_t a)
{
return static_cast<int64_t>(bitsToFloat(a));
}
uint64_t
intToDouble(int32_t a)
{
return doubleToBits(static_cast<double>(a));
}
uint32_t
intToFloat(int32_t a)
{
return floatToBits(static_cast<float>(a));
}
object FORCE_ALIGN
makeBlankObjectArray(Thread* t, object class_, int32_t length)
{
return makeObjectArray(t, class_, length, true);
}
object FORCE_ALIGN
makeBlankArray(Thread* t, object (*constructor)(Thread*, uintptr_t, bool),
int32_t length)
{
return constructor(t, length, true);
}
uintptr_t
lookUpAddress(int32_t key, uintptr_t* start, int32_t count,
uintptr_t default_)
{
int32_t bottom = 0;
int32_t top = count;
for (int32_t span = top - bottom; span; span = top - bottom) {
int32_t middle = bottom + (span / 2);
uintptr_t* p = start + (middle * 2);
int32_t k = *p;
if (key < k) {
top = middle;
} else if (key > k) {
bottom = middle + 1;
} else {
return p[1];
}
}
return default_;
}
void FORCE_ALIGN
setMaybeNull(MyThread* t, object o, unsigned offset, object value)
{
if (LIKELY(o)) {
set(t, o, offset, value);
} else {
t->exception = makeNullPointerException(t);
unwind(t);
}
}
void FORCE_ALIGN
acquireMonitorForObject(MyThread* t, object o)
{
if (LIKELY(o)) {
acquire(t, o);
} else {
t->exception = makeNullPointerException(t);
unwind(t);
}
}
void FORCE_ALIGN
releaseMonitorForObject(MyThread* t, object o)
{
if (LIKELY(o)) {
release(t, o);
} else {
t->exception = makeNullPointerException(t);
unwind(t);
}
}
object
makeMultidimensionalArray2(MyThread* t, object class_, uintptr_t* stack,
int32_t dimensions)
{
PROTECT(t, class_);
int32_t counts[dimensions];
for (int i = dimensions - 1; i >= 0; --i) {
counts[i] = stack[dimensions - i - 1];
if (UNLIKELY(counts[i] < 0)) {
object message = makeString(t, "%d", counts[i]);
t->exception = makeNegativeArraySizeException(t, message);
return 0;
}
}
object array = makeArray(t, counts[0], true);
setObjectClass(t, array, class_);
PROTECT(t, array);
populateMultiArray(t, array, counts, 0, dimensions);
return array;
}
object FORCE_ALIGN
makeMultidimensionalArray(MyThread* t, object class_, uintptr_t* stack,
int32_t dimensions)
{
object r = makeMultidimensionalArray2(t, class_, stack, dimensions);
if (UNLIKELY(t->exception)) {
unwind(t);
} else {
return r;
}
}
void NO_RETURN FORCE_ALIGN
throwArrayIndexOutOfBounds(MyThread* t, object array, int32_t index)
{
object message = makeString
(t, "array of length %d indexed at %d", arrayLength(t, array), index);
t->exception = makeArrayIndexOutOfBoundsException(t, message);
unwind(t);
}
void NO_RETURN FORCE_ALIGN
throwNegativeArraySize(MyThread* t, int32_t length)
{
object message = makeString(t, "%d", length);
t->exception = makeArrayIndexOutOfBoundsException(t, message);
unwind(t);
}
void NO_RETURN FORCE_ALIGN
throw_(MyThread* t, object o)
{
if (LIKELY(o)) {
t->exception = o;
} else {
t->exception = makeNullPointerException(t);
}
unwind(t);
}
void FORCE_ALIGN
checkCast(MyThread* t, object class_, object o)
{
if (UNLIKELY(o and not isAssignableFrom(t, class_, objectClass(t, o)))) {
object message = makeString
(t, "%s as %s",
&byteArrayBody(t, className(t, objectClass(t, o)), 0),
&byteArrayBody(t, className(t, class_), 0));
t->exception = makeClassCastException(t, message);
unwind(t);
}
}
unsigned
resultSize(MyThread* t, unsigned code)
{
switch (code) {
case ByteField:
case BooleanField:
case CharField:
case ShortField:
case FloatField:
case IntField:
return 4;
case ObjectField:
return BytesPerWord;
case LongField:
case DoubleField:
return 8;
case VoidField:
return 0;
default:
abort(t);
}
}
void
compileDirectInvoke(MyThread* t, Frame* frame, object target)
{
Compiler* c = frame->c;
unsigned rSize = resultSize(t, methodReturnCode(t, target));
Compiler::Operand* result = c->call
(c->constant
(reinterpret_cast<intptr_t>
(&singletonBody(t, methodCompiled(t, target), 0))),
0,
Compiler::Aligned,
frame->trace(target, false),
rSize,
0);
c->popped(methodParameterFootprint(t, target));
if (rSize) {
c->push(rSize, result);
}
}
void
handleMonitorEvent(MyThread* t, Frame* frame, intptr_t function)
{
Compiler* c = frame->c;
object method = frame->context->method;
if (methodFlags(t, method) & ACC_SYNCHRONIZED) {
Compiler::Operand* lock;
if (methodFlags(t, method) & ACC_STATIC) {
lock = frame->append(methodClass(t, method));
} else {
lock = c->memory
(c->base(), localOffset(t, savedTargetIndex(t, method), method));
}
c->call(c->constant(function),
frame->context->indirection,
0,
frame->trace(0, false),
0,
2, c->thread(), lock);
}
}
void
handleEntrance(MyThread* t, Frame* frame)
{
object method = frame->context->method;
if ((methodFlags(t, method) & (ACC_SYNCHRONIZED | ACC_STATIC))
== ACC_SYNCHRONIZED)
{
Compiler* c = frame->c;
// save 'this' pointer in case it is overwritten.
unsigned index = savedTargetIndex(t, method);
c->store(BytesPerWord,
c->memory(c->base(), localOffset(t, 0, method)),
c->memory(c->base(), localOffset(t, index, method)));
frame->set(index, Frame::Object);
}
handleMonitorEvent
(t, frame, reinterpret_cast<intptr_t>(acquireMonitorForObject));
}
void
handleExit(MyThread* t, Frame* frame)
{
handleMonitorEvent
(t, frame, reinterpret_cast<intptr_t>(releaseMonitorForObject));
}
void
compile(MyThread* t, Frame* initialFrame, unsigned ip)
{
uint8_t stackMap
[codeMaxStack(t, methodCode(t, initialFrame->context->method))];
Frame myFrame(initialFrame, stackMap);
Frame* frame = &myFrame;
Compiler* c = frame->c;
Context* context = frame->context;
object code = methodCode(t, context->method);
PROTECT(t, code);
while (ip < codeLength(t, code)) {
frame->visitLogicalIp(ip);
if (context->visitTable[ip] ++) {
// we've already visited this part of the code
return;
}
frame->startLogicalIp(ip);
// fprintf(stderr, "ip: %d map: %ld\n", ip, *(frame->map));
unsigned instruction = codeBody(t, code, ip++);
switch (instruction) {
case aaload:
case baload:
case caload:
case daload:
case faload:
case iaload:
case laload:
case saload: {
Compiler::Operand* index = frame->popInt();
Compiler::Operand* array = frame->popObject();
if (CheckArrayBounds) {
Compiler::Operand* load = c->label();
Compiler::Operand* throw_ = c->label();
c->cmp(4, c->constant(0), index);
c->jl(throw_);
c->cmp(BytesPerWord,
c->memory(array, ArrayLength, 0, 1, frame->trace(0, false)),
index);
c->jl(load);
c->mark(throw_);
c->call
(c->constant(reinterpret_cast<intptr_t>(throwArrayIndexOutOfBounds)),
context->indirection,
Compiler::NoReturn,
frame->trace(0, false),
0,
3, c->thread(), array, index);
c->mark(load);
}
switch (instruction) {
case aaload:
frame->pushObject
(c->load
(BytesPerWord, c->memory(array, ArrayBody, index, BytesPerWord)));
break;
case faload:
case iaload:
frame->pushInt(c->load(4, c->memory(array, ArrayBody, index, 4)));
break;
case baload:
frame->pushInt(c->load(1, c->memory(array, ArrayBody, index, 1)));
break;
case caload:
frame->pushInt(c->loadz(2, c->memory(array, ArrayBody, index, 2)));
break;
case daload:
case laload:
frame->pushLong(c->load(8, c->memory(array, ArrayBody, index, 8)));
break;
case saload:
frame->pushInt(c->load(2, c->memory(array, ArrayBody, index, 2)));
break;
}
} break;
case aastore:
case bastore:
case castore:
case dastore:
case fastore:
case iastore:
case lastore:
case sastore: {
Compiler::Operand* value;
if (instruction == dastore or instruction == lastore) {
value = frame->popLong();
} else if (instruction == aastore) {
value = frame->popObject();
} else {
value = frame->popInt();
}
Compiler::Operand* index = frame->popInt();
Compiler::Operand* array = frame->popObject();
if (CheckArrayBounds) {
Compiler::Operand* store = c->label();
Compiler::Operand* throw_ = c->label();
c->cmp(4, c->constant(0), index);
c->jl(throw_);
c->cmp(BytesPerWord,
c->memory(array, ArrayLength, 0, 1, frame->trace(0, false)),
index);
c->jl(store);
c->mark(throw_);
c->call
(c->constant(reinterpret_cast<intptr_t>(throwArrayIndexOutOfBounds)),
context->indirection,
Compiler::NoReturn,
frame->trace(0, false),
0,
3, c->thread(), array, index);
c->mark(store);
}
switch (instruction) {
case aastore: {
c->call
(c->constant(reinterpret_cast<intptr_t>(setMaybeNull)),
context->indirection,
0,
frame->trace(0, false),
0,
4, c->thread(), array,
c->add(4, c->constant(ArrayBody),
c->shl(4, c->constant(log(BytesPerWord)), index)),
value);
} break;
case fastore:
case iastore:
c->store(4, value, c->memory(array, ArrayBody, index, 4));
break;
case bastore:
c->store(1, value, c->memory(array, ArrayBody, index, 1));
break;
case castore:
case sastore:
c->store(2, value, c->memory(array, ArrayBody, index, 2));
break;
case dastore:
case lastore:
c->store(8, value, c->memory(array, ArrayBody, index, 8));
break;
}
} break;
case aconst_null:
frame->pushObject(c->constant(0));
break;
case aload:
frame->loadObject(codeBody(t, code, ip++));
break;
case aload_0:
frame->loadObject(0);
break;
case aload_1:
frame->loadObject(1);
break;
case aload_2:
frame->loadObject(2);
break;
case aload_3:
frame->loadObject(3);
break;
case anewarray: {
uint16_t index = codeReadInt16(t, code, ip);
object class_ = resolveClassInPool(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
Compiler::Operand* nonnegative = c->label();
Compiler::Operand* length = frame->popInt();
c->cmp(4, c->constant(0), length);
c->jge(nonnegative);
c->call
(c->constant(reinterpret_cast<intptr_t>(throwNegativeArraySize)),
context->indirection,
Compiler::NoReturn,
frame->trace(0, false),
0,
2, c->thread(), length);
c->mark(nonnegative);
frame->pushObject
(c->call
(c->constant(reinterpret_cast<intptr_t>(makeBlankObjectArray)),
context->indirection,
0,
frame->trace(0, false),
BytesPerWord,
3, c->thread(), frame->append(class_), length));
} break;
case areturn: {
handleExit(t, frame);
c->return_(BytesPerWord, frame->popObject());
} return;
case arraylength: {
frame->pushInt
(c->load
(BytesPerWord, c->memory
(frame->popObject(), ArrayLength, 0, 1, frame->trace(0, false))));
} break;
case astore:
frame->storeObjectOrAddress(codeBody(t, code, ip++));
break;
case astore_0:
frame->storeObjectOrAddress(0);
break;
case astore_1:
frame->storeObjectOrAddress(1);
break;
case astore_2:
frame->storeObjectOrAddress(2);
break;
case astore_3:
frame->storeObjectOrAddress(3);
break;
case athrow: {
c->call
(c->constant(reinterpret_cast<intptr_t>(throw_)),
context->indirection,
Compiler::NoReturn,
frame->trace(0, false),
0,
2, c->thread(), frame->popObject());
} return;
case bipush:
frame->pushInt
(c->constant(static_cast<int8_t>(codeBody(t, code, ip++))));
break;
case checkcast: {
uint16_t index = codeReadInt16(t, code, ip);
object class_ = resolveClassInPool(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
Compiler::Operand* instance = c->peek(0);
c->call
(c->constant(reinterpret_cast<intptr_t>(checkCast)),
context->indirection,
0,
frame->trace(0, false),
0,
3, c->thread(), frame->append(class_), instance);
} break;
case d2f: {
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(doubleToFloat)),
0, 0, 0, 4, 1, frame->popLong()));
} break;
case d2i: {
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(doubleToInt)),
0, 0, 0, 4, 1, frame->popLong()));
} break;
case d2l: {
frame->pushLong
(c->call
(c->constant(reinterpret_cast<intptr_t>(doubleToLong)),
0, 0, 0, 8, 1, frame->popLong()));
} break;
case dadd: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong
(c->call
(c->constant(reinterpret_cast<intptr_t>(doubleToInt)),
0, 0, 0, 8, 2, a, b));
} break;
case dcmpg: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(compareDoublesG)),
0, 0, 0, 4, 2, a, b));
} break;
case dcmpl: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(compareDoublesL)),
0, 0, 0, 4, 2, a, b));
} break;
case dconst_0:
frame->pushLong(c->constant(doubleToBits(0.0)));
break;
case dconst_1:
frame->pushLong(c->constant(doubleToBits(1.0)));
break;
case ddiv: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong
(c->call
(c->constant(reinterpret_cast<intptr_t>(divideDouble)),
0, 0, 0, 8, 2, a, b));
} break;
case dmul: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong
(c->call
(c->constant(reinterpret_cast<intptr_t>(multiplyDouble)),
0, 0, 0, 8, 2, a, b));
} break;
case dneg: {
frame->pushLong
(c->call
(c->constant(reinterpret_cast<intptr_t>(negateDouble)),
0, 0, 0, 8, 1, frame->popLong()));
} break;
case vm::drem: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong
(c->call
(c->constant(reinterpret_cast<intptr_t>(moduloDouble)),
0, 0, 0, 8, 2, a, b));
} break;
case dsub: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong
(c->call
(c->constant(reinterpret_cast<intptr_t>(subtractDouble)),
0, 0, 0, 8, 2, a, b));
} break;
case dup:
frame->dup();
break;
case dup_x1:
frame->dupX1();
break;
case dup_x2:
frame->dupX2();
break;
case dup2:
frame->dup2();
break;
case dup2_x1:
frame->dup2X1();
break;
case dup2_x2:
frame->dup2X2();
break;
case f2d: {
frame->pushLong
(c->call
(c->constant(reinterpret_cast<intptr_t>(floatToDouble)),
0, 0, 0, 8, 1, frame->popInt()));
} break;
case f2i: {
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(floatToInt)),
0, 0, 0, 4, 1, frame->popInt()));
} break;
case f2l: {
frame->pushLong
(c->call
(c->constant(reinterpret_cast<intptr_t>(floatToLong)),
0, 0, 0, 8, 1, frame->popInt()));
} break;
case fadd: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(addFloat)),
0, 0, 0, 4, 2, a, b));
} break;
case fcmpg: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(compareFloatsG)),
0, 0, 0, 4, 2, a, b));
} break;
case fcmpl: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(compareFloatsL)),
0, 0, 0, 4, 2, a, b));
} break;
case fconst_0:
frame->pushInt(c->constant(floatToBits(0.0)));
break;
case fconst_1:
frame->pushInt(c->constant(floatToBits(1.0)));
break;
case fconst_2:
frame->pushInt(c->constant(floatToBits(2.0)));
break;
case fdiv: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(divideFloat)),
0, 0, 0, 4, 2, a, b));
} break;
case fmul: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(multiplyFloat)),
0, 0, 0, 4, 2, a, b));
} break;
case fneg: {
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(negateFloat)),
0, 0, 0, 4, 1, frame->popInt()));
} break;
case vm::frem: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(moduloFloat)),
0, 0, 0, 4, 2, a, b));
} break;
case fsub: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(subtractFloat)),
0, 0, 0, 4, 2, a, b));
} break;
case getfield:
case getstatic: {
uint16_t index = codeReadInt16(t, code, ip);
object field = resolveField(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
Compiler::Operand* table;
if (instruction == getstatic) {
c->call
(c->constant(reinterpret_cast<intptr_t>(tryInitClass)),
context->indirection,
0,
frame->trace(0, false),
0,
2, c->thread(), frame->append(fieldClass(t, field)));
table = frame->append(classStaticTable(t, fieldClass(t, field)));
} else {
table = frame->popObject();
}
TraceElement* trace = 0;
if (instruction == getfield) {
trace = frame->trace(0, false);
}
switch (fieldCode(t, field)) {
case ByteField:
case BooleanField:
frame->pushInt
(c->load(1, c->memory(table, fieldOffset(t, field), 0, 1, trace)));
break;
case CharField:
frame->pushInt
(c->loadz(2, c->memory(table, fieldOffset(t, field), 0, 1, trace)));
break;
case ShortField:
frame->pushInt
(c->load(2, c->memory(table, fieldOffset(t, field), 0, 1, trace)));
break;
case FloatField:
case IntField:
frame->pushInt
(c->load(4, c->memory(table, fieldOffset(t, field), 0, 1, trace)));
break;
case DoubleField:
case LongField:
frame->pushLong
(c->load(8, c->memory(table, fieldOffset(t, field), 0, 1, trace)));
break;
case ObjectField:
frame->pushObject
(c->load
(BytesPerWord, c->memory
(table, fieldOffset(t, field), 0, 1, trace)));
break;
default:
abort(t);
}
} break;
case goto_: {
uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip);
assert(t, newIp < codeLength(t, code));
c->jmp(frame->machineIp(newIp));
ip = newIp;
} break;
case goto_w: {
uint32_t newIp = (ip - 5) + codeReadInt32(t, code, ip);
assert(t, newIp < codeLength(t, code));
c->jmp(frame->machineIp(newIp));
ip = newIp;
} break;
case i2b: {
frame->pushInt(c->load(1, frame->popInt()));
} break;
case i2c: {
frame->pushInt(c->loadz(2, frame->popInt()));
} break;
case i2d: {
frame->pushLong
(c->call
(c->constant(reinterpret_cast<intptr_t>(intToDouble)),
0, 0, 0, 8, 1, frame->popInt()));
} break;
case i2f: {
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(intToFloat)),
0, 0, 0, 4, 1, frame->popInt()));
} break;
case i2l:
frame->pushLong(c->load4To8(frame->popInt()));
break;
case i2s: {
frame->pushInt(c->load(2, frame->popInt()));
} break;
case iadd: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt(c->add(4, a, b));
} break;
case iand: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt(c->and_(4, a, b));
} break;
case iconst_m1:
frame->pushInt(c->constant(-1));
break;
case iconst_0:
frame->pushInt(c->constant(0));
break;
case iconst_1:
frame->pushInt(c->constant(1));
break;
case iconst_2:
frame->pushInt(c->constant(2));
break;
case iconst_3:
frame->pushInt(c->constant(3));
break;
case iconst_4:
frame->pushInt(c->constant(4));
break;
case iconst_5:
frame->pushInt(c->constant(5));
break;
case idiv: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt(c->div(4, a, b));
} break;
case if_acmpeq:
case if_acmpne: {
uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip);
assert(t, newIp < codeLength(t, code));
Compiler::Operand* a = frame->popObject();
Compiler::Operand* b = frame->popObject();
Compiler::Operand* target = frame->machineIp(newIp);
c->cmp(BytesPerWord, a, b);
if (instruction == if_acmpeq) {
c->je(target);
} else {
c->jne(target);
}
compile(t, frame, newIp);
if (UNLIKELY(t->exception)) return;
} break;
case if_icmpeq:
case if_icmpne:
case if_icmpgt:
case if_icmpge:
case if_icmplt:
case if_icmple: {
uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip);
assert(t, newIp < codeLength(t, code));
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
Compiler::Operand* target = frame->machineIp(newIp);
c->cmp(4, a, b);
switch (instruction) {
case if_icmpeq:
c->je(target);
break;
case if_icmpne:
c->jne(target);
break;
case if_icmpgt:
c->jg(target);
break;
case if_icmpge:
c->jge(target);
break;
case if_icmplt:
c->jl(target);
break;
case if_icmple:
c->jle(target);
break;
}
compile(t, frame, newIp);
if (UNLIKELY(t->exception)) return;
} break;
case ifeq:
case ifne:
case ifgt:
case ifge:
case iflt:
case ifle: {
uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip);
assert(t, newIp < codeLength(t, code));
Compiler::Operand* a = frame->popInt();
Compiler::Operand* target = frame->machineIp(newIp);
c->cmp(4, c->constant(0), a);
switch (instruction) {
case ifeq:
c->je(target);
break;
case ifne:
c->jne(target);
break;
case ifgt:
c->jg(target);
break;
case ifge:
c->jge(target);
break;
case iflt:
c->jl(target);
break;
case ifle:
c->jle(target);
break;
}
compile(t, frame, newIp);
if (UNLIKELY(t->exception)) return;
} break;
case ifnull:
case ifnonnull: {
uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip);
assert(t, newIp < codeLength(t, code));
Compiler::Operand* a = frame->popObject();
Compiler::Operand* target = frame->machineIp(newIp);
c->cmp(BytesPerWord, c->constant(0), a);
if (instruction == ifnull) {
c->je(target);
} else {
c->jne(target);
}
compile(t, frame, newIp);
if (UNLIKELY(t->exception)) return;
} break;
case iinc: {
uint8_t index = codeBody(t, code, ip++);
int8_t count = codeBody(t, code, ip++);
Compiler::Operand* a = c->memory
(c->base(), localOffset(t, index, context->method));
c->store(4, c->add(4, c->constant(count), a), a);
} break;
case iload:
case fload:
frame->loadInt(codeBody(t, code, ip++));
break;
case iload_0:
case fload_0:
frame->loadInt(0);
break;
case iload_1:
case fload_1:
frame->loadInt(1);
break;
case iload_2:
case fload_2:
frame->loadInt(2);
break;
case iload_3:
case fload_3:
frame->loadInt(3);
break;
case imul: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt(c->mul(4, a, b));
} break;
case ineg: {
frame->pushInt(c->neg(4, frame->popInt()));
} break;
case instanceof: {
uint16_t index = codeReadInt16(t, code, ip);
object class_ = resolveClassInPool(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
frame->pushInt
(c->call
(c->constant(reinterpret_cast<intptr_t>(instanceOf)),
0, 0, 0, 4,
3, c->thread(), frame->append(class_), frame->popObject()));
} break;
case invokeinterface: {
uint16_t index = codeReadInt16(t, code, ip);
ip += 2;
object target = resolveMethod(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
unsigned parameterFootprint = methodParameterFootprint(t, target);
unsigned instance = parameterFootprint - 1;
unsigned rSize = resultSize(t, methodReturnCode(t, target));
Compiler::Operand* result = c->call
(c->call
(c->constant
(reinterpret_cast<intptr_t>(findInterfaceMethodFromInstance)),
context->indirection,
0,
frame->trace(0, false),
BytesPerWord,
3, c->thread(), frame->append(target),
c->peek(instance)),
0,
0,
frame->trace(target, true),
rSize,
0);
frame->pop(parameterFootprint);
if (rSize) {
c->push(rSize, result);
}
} break;
case invokespecial: {
uint16_t index = codeReadInt16(t, code, ip);
object target = resolveMethod(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
object class_ = methodClass(t, context->method);
if (isSpecialMethod(t, target, class_)) {
target = findMethod(t, target, classSuper(t, class_));
}
compileDirectInvoke(t, frame, target);
} break;
case invokestatic: {
uint16_t index = codeReadInt16(t, code, ip);
object target = resolveMethod(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
compileDirectInvoke(t, frame, target);
} break;
case invokevirtual: {
uint16_t index = codeReadInt16(t, code, ip);
object target = resolveMethod(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
unsigned parameterFootprint = methodParameterFootprint(t, target);
unsigned offset = ClassVtable + (methodOffset(t, target) * BytesPerWord);
Compiler::Operand* instance = c->peek(parameterFootprint - 1);
unsigned rSize = resultSize(t, methodReturnCode(t, target));
Compiler::Operand* result = c->call
(c->memory
(c->and_
(4, c->constant(PointerMask), c->memory
(instance, 0, 0, 1, frame->trace(0, false))), offset, 0, 1),
0,
0,
frame->trace(0, true),
rSize,
0);
frame->pop(parameterFootprint);
if (rSize) {
c->push(rSize, result);
}
} break;
case ior: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt(c->or_(4, a, b));
} break;
case irem: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt(c->rem(4, a, b));
} break;
case ireturn:
case freturn: {
handleExit(t, frame);
c->return_(4, frame->popInt());
} return;
case ishl: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt(c->shl(4, a, b));
} break;
case ishr: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt(c->shr(4, a, b));
} break;
case istore:
case fstore:
frame->storeInt(codeBody(t, code, ip++));
break;
case istore_0:
case fstore_0:
frame->storeInt(0);
break;
case istore_1:
case fstore_1:
frame->storeInt(1);
break;
case istore_2:
case fstore_2:
frame->storeInt(2);
break;
case istore_3:
case fstore_3:
frame->storeInt(3);
break;
case isub: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt(c->sub(4, a, b));
} break;
case iushr: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt(c->ushr(4, a, b));
} break;
case ixor: {
Compiler::Operand* a = frame->popInt();
Compiler::Operand* b = frame->popInt();
frame->pushInt(c->xor_(4, a, b));
} break;
case jsr:
case jsr_w: {
uint32_t newIp;
if (instruction == jsr) {
newIp = (ip - 3) + codeReadInt16(t, code, ip);
} else {
newIp = (ip - 5) + codeReadInt32(t, code, ip);
}
assert(t, newIp < codeLength(t, code));
frame->pushAddress(frame->machineIp(ip));
c->jmp(frame->machineIp(newIp));
// NB: we assume that the stack will look the same on return
// from the subroutine as at call time.
compile(t, frame, newIp);
if (UNLIKELY(t->exception)) return;
frame->pop(1);
} break;
case l2i:
frame->pushInt(c->load(4, frame->popLong()));
break;
case ladd: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong(c->add(8, a, b));
} break;
case land: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong(c->and_(8, a, b));
} break;
case lcmp: {
Compiler::Operand* next = c->label();
Compiler::Operand* less = c->label();
Compiler::Operand* greater = c->label();
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
c->cmp(8, a, b);
c->jl(less);
c->jg(greater);
c->push(4, c->constant(0));
c->jmp(next);
c->mark(less);
c->push(4, c->constant(-1));
c->jmp(next);
c->mark(greater);
c->push(4, c->constant(1));
c->mark(next);
frame->pushedInt();
} break;
case lconst_0:
frame->pushLong(c->constant(0));
break;
case lconst_1:
frame->pushLong(c->constant(1));
break;
case ldc:
case ldc_w: {
uint16_t index;
if (instruction == ldc) {
index = codeBody(t, code, ip++);
} else {
index = codeReadInt16(t, code, ip);
}
object pool = codePool(t, code);
if (singletonIsObject(t, pool, index - 1)) {
object v = singletonObject(t, pool, index - 1);
if (objectClass(t, v)
== arrayBody(t, t->m->types, Machine::ByteArrayType))
{
object class_ = resolveClassInPool(t, pool, index - 1);
if (UNLIKELY(t->exception)) return;
frame->pushObject(frame->append(class_));
} else {
frame->pushObject(frame->append(v));
}
} else {
frame->pushInt(c->constant(singletonValue(t, pool, index - 1)));
}
} break;
case ldc2_w: {
uint16_t index = codeReadInt16(t, code, ip);
object pool = codePool(t, code);
uint64_t v;
memcpy(&v, &singletonValue(t, pool, index - 1), 8);
frame->pushLong(c->constant(v));
} break;
case ldiv_: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong(c->div(8, a, b));
} break;
case lload:
case dload:
frame->loadLong(codeBody(t, code, ip++));
break;
case lload_0:
case dload_0:
frame->loadLong(0);
break;
case lload_1:
case dload_1:
frame->loadLong(1);
break;
case lload_2:
case dload_2:
frame->loadLong(2);
break;
case lload_3:
case dload_3:
frame->loadLong(3);
break;
case lmul: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong(c->mul(8, a, b));
} break;
case lneg:
frame->pushLong(c->neg(8, frame->popLong()));
break;
case lookupswitch: {
int32_t base = ip - 1;
ip = (ip + 3) & ~3; // pad to four byte boundary
Compiler::Operand* key = frame->popInt();
uint32_t defaultIp = base + codeReadInt32(t, code, ip);
assert(t, defaultIp < codeLength(t, code));
Compiler::Operand* default_ = c->address
(c->poolAppendPromise(c->machineIp(defaultIp)));
int32_t pairCount = codeReadInt32(t, code, ip);
Compiler::Operand* start = 0;
uint32_t ipTable[pairCount];
for (int32_t i = 0; i < pairCount; ++i) {
unsigned index = ip + (i * 8);
int32_t key = codeReadInt32(t, code, index);
uint32_t newIp = base + codeReadInt32(t, code, index);
assert(t, newIp < codeLength(t, code));
ipTable[i] = newIp;
Promise* p = c->poolAppend(key);
if (i == 0) {
start = c->promiseConstant(p);
}
c->poolAppendPromise(c->machineIp(newIp));
}
assert(t, start);
c->jmp
(c->call
(c->constant(reinterpret_cast<intptr_t>(lookUpAddress)),
0, 0, 0, BytesPerWord,
4, key, start, c->constant(pairCount), default_));
for (int32_t i = 0; i < pairCount; ++i) {
compile(t, frame, ipTable[i]);
if (UNLIKELY(t->exception)) return;
}
ip = defaultIp;
} break;
case lor: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong(c->or_(8, a, b));
} break;
case lrem: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong(c->rem(8, a, b));
} break;
case lreturn:
case dreturn: {
handleExit(t, frame);
c->return_(8, frame->popLong());
} return;
case lshl: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong(c->shl(8, a, b));
} break;
case lshr: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong(c->shr(8, a, b));
} break;
case lstore:
case dstore:
frame->storeLong(codeBody(t, code, ip++));
break;
case lstore_0:
case dstore_0:
frame->storeLong(0);
break;
case lstore_1:
case dstore_1:
frame->storeLong(1);
break;
case lstore_2:
case dstore_2:
frame->storeLong(2);
break;
case lstore_3:
case dstore_3:
frame->storeLong(3);
break;
case lsub: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong(c->sub(8, a, b));
} break;
case lushr: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong(c->ushr(8, a, b));
} break;
case lxor: {
Compiler::Operand* a = frame->popLong();
Compiler::Operand* b = frame->popLong();
frame->pushLong(c->xor_(8, a, b));
} break;
case monitorenter: {
c->call
(c->constant(reinterpret_cast<intptr_t>(acquireMonitorForObject)),
context->indirection,
0, frame->trace(0, false), 0, 2, c->thread(), frame->popObject());
} break;
case monitorexit: {
c->call
(c->constant(reinterpret_cast<intptr_t>(releaseMonitorForObject)),
context->indirection,
0, frame->trace(0, false), 0, 2, c->thread(), frame->popObject());
} break;
case multianewarray: {
uint16_t index = codeReadInt16(t, code, ip);
uint8_t dimensions = codeBody(t, code, ip++);
object class_ = resolveClassInPool(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
PROTECT(t, class_);
Compiler::Operand* result = c->call
(c->constant(reinterpret_cast<intptr_t>(makeMultidimensionalArray)),
context->indirection,
0,
frame->trace(0, false),
BytesPerWord,
4, c->thread(), frame->append(class_),
c->load(BytesPerWord, c->stack()), c->constant(dimensions));
frame->pop(dimensions);
frame->pushObject(result);
} break;
case new_: {
uint16_t index = codeReadInt16(t, code, ip);
object class_ = resolveClassInPool(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
if (classVmFlags(t, class_) & WeakReferenceFlag) {
frame->pushObject
(c->call
(c->constant(reinterpret_cast<intptr_t>(makeNewWeakReference)),
context->indirection,
0,
frame->trace(0, false),
BytesPerWord,
2, c->thread(), frame->append(class_)));
} else {
frame->pushObject
(c->call
(c->constant(reinterpret_cast<intptr_t>(makeNew)),
context->indirection,
0,
frame->trace(0, false),
BytesPerWord,
2, c->thread(), frame->append(class_)));
}
} break;
case newarray: {
uint8_t type = codeBody(t, code, ip++);
Compiler::Operand* nonnegative = c->label();
Compiler::Operand* length = frame->popInt();
c->cmp(4, c->constant(0), length);
c->jge(nonnegative);
c->call
(c->constant(reinterpret_cast<intptr_t>(throwNegativeArraySize)),
context->indirection,
Compiler::NoReturn,
frame->trace(0, false),
0,
2, c->thread(), length);
c->mark(nonnegative);
object (*constructor)(Thread*, uintptr_t, bool);
switch (type) {
case T_BOOLEAN:
constructor = makeBooleanArray;
break;
case T_CHAR:
constructor = makeCharArray;
break;
case T_FLOAT:
constructor = makeFloatArray;
break;
case T_DOUBLE:
constructor = makeDoubleArray;
break;
case T_BYTE:
constructor = makeByteArray;
break;
case T_SHORT:
constructor = makeShortArray;
break;
case T_INT:
constructor = makeIntArray;
break;
case T_LONG:
constructor = makeLongArray;
break;
default: abort(t);
}
frame->pushObject
(c->call
(c->constant(reinterpret_cast<intptr_t>(makeBlankArray)),
context->indirection,
0,
frame->trace(0, false),
BytesPerWord,
2, c->thread(), c->constant(reinterpret_cast<intptr_t>(constructor)),
length));
} break;
case nop: break;
case pop_:
frame->pop(1);
break;
case pop2:
frame->pop(2);
break;
case putfield:
case putstatic: {
uint16_t index = codeReadInt16(t, code, ip);
object field = resolveField(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
object staticTable = 0;
if (instruction == putstatic) {
c->call
(c->constant(reinterpret_cast<intptr_t>(tryInitClass)),
context->indirection,
0,
frame->trace(0, false),
0,
2, c->thread(), frame->append(fieldClass(t, field)));
staticTable = classStaticTable(t, fieldClass(t, field));
}
Compiler::Operand* value;
switch (fieldCode(t, field)) {
case ByteField:
case BooleanField:
case CharField:
case ShortField:
case FloatField:
case IntField: {
value = frame->popInt();
} break;
case DoubleField:
case LongField: {
value = frame->popLong();
} break;
case ObjectField: {
value = frame->popObject();
} break;
default: abort(t);
}
Compiler::Operand* table;
if (instruction == putstatic) {
table = frame->append(staticTable);
} else {
table = frame->popObject();
}
TraceElement* trace = 0;
if (instruction == putfield and fieldCode(t, field) != ObjectField) {
trace = frame->trace(0, false);
}
switch (fieldCode(t, field)) {
case ByteField:
case BooleanField:
c->store
(1, value, c->memory(table, fieldOffset(t, field), 0, 1, trace));
break;
case CharField:
case ShortField:
c->store
(2, value, c->memory(table, fieldOffset(t, field), 0, 1, trace));
break;
case FloatField:
case IntField:
c->store
(4, value, c->memory(table, fieldOffset(t, field), 0, 1, trace));
break;
case DoubleField:
case LongField:
c->store
(8, value, c->memory(table, fieldOffset(t, field), 0, 1, trace));
break;
case ObjectField:
if (instruction == putfield) {
c->call
(c->constant(reinterpret_cast<intptr_t>(setMaybeNull)),
context->indirection,
0,
frame->trace(0, false),
0,
4, c->thread(), table, c->constant(fieldOffset(t, field)), value);
} else {
c->call
(c->constant(reinterpret_cast<intptr_t>(set)),
0, 0, 0, 0,
4, c->thread(), table, c->constant(fieldOffset(t, field)), value);
}
break;
default: abort(t);
}
} break;
case ret:
c->jmp
(c->memory
(c->base(), localOffset
(t, codeBody(t, code, ip), context->method)));
return;
case return_:
handleExit(t, frame);
c->return_(0, 0);
return;
case sipush:
frame->pushInt
(c->constant(static_cast<int16_t>(codeReadInt16(t, code, ip))));
break;
case swap:
frame->swap();
break;
case tableswitch: {
int32_t base = ip - 1;
ip = (ip + 3) & ~3; // pad to four byte boundary
Compiler::Operand* key = frame->popInt();
uint32_t defaultIp = base + codeReadInt32(t, code, ip);
assert(t, defaultIp < codeLength(t, code));
int32_t bottom = codeReadInt32(t, code, ip);
int32_t top = codeReadInt32(t, code, ip);
Compiler::Operand* start = 0;
uint32_t ipTable[top - bottom + 1];
for (int32_t i = 0; i < top - bottom + 1; ++i) {
unsigned index = ip + (i * 4);
uint32_t newIp = base + codeReadInt32(t, code, index);
assert(t, newIp < codeLength(t, code));
ipTable[i] = newIp;
Promise* p = c->poolAppendPromise(c->machineIp(newIp));
if (i == 0) {
start = c->promiseConstant(p);
}
}
assert(t, start);
Compiler::Operand* defaultCase = c->label();
c->cmp(4, c->constant(bottom), key);
c->jl(defaultCase);
c->cmp(4, c->constant(top), key);
c->jg(defaultCase);
c->sub(4, c->constant(bottom), key);
c->jmp(c->memory(start, 0, key, BytesPerWord));
c->mark(defaultCase);
c->jmp(frame->machineIp(defaultIp));
for (int32_t i = 0; i < top - bottom + 1; ++i) {
compile(t, frame, ipTable[i]);
if (UNLIKELY(t->exception)) return;
}
ip = defaultIp;
} break;
case wide: {
switch (codeBody(t, code, ip++)) {
case aload: {
frame->loadObject(codeReadInt16(t, code, ip));
} break;
case astore: {
frame->storeObject(codeReadInt16(t, code, ip));
} break;
case iinc: {
uint16_t index = codeReadInt16(t, code, ip);
uint16_t count = codeReadInt16(t, code, ip);
Compiler::Operand* a = c->memory
(c->base(), localOffset(t, index, context->method));
c->store(4, c->add(4, c->constant(count), a), a);
} break;
case iload: {
frame->loadInt(codeReadInt16(t, code, ip));
} break;
case istore: {
frame->storeInt(codeReadInt16(t, code, ip));
} break;
case lload: {
frame->loadLong(codeReadInt16(t, code, ip));
} break;
case lstore: {
frame->storeLong(codeReadInt16(t, code, ip));
} break;
case ret:
c->jmp
(c->memory
(c->base(), localOffset
(t, codeReadInt16(t, code, ip), context->method)));
return;
default: abort(t);
}
} break;
default: abort(t);
}
}
}
void
logCompile(const void* code, unsigned size, const char* class_,
const char* name, const char* spec)
{
fprintf(stderr, "%s.%s%s from %p to %p\n",
class_, name, spec, code,
static_cast<const uint8_t*>(code) + size);
}
void
updateExceptionHandlerTable(MyThread* t, Compiler* c, object code,
intptr_t start)
{
object oldTable = codeExceptionHandlerTable(t, code);
if (oldTable) {
PROTECT(t, code);
PROTECT(t, oldTable);
unsigned length = exceptionHandlerTableLength(t, oldTable);
object newTable = makeExceptionHandlerTable(t, length, false);
for (unsigned i = 0; i < length; ++i) {
ExceptionHandler* oldHandler = exceptionHandlerTableBody
(t, oldTable, i);
ExceptionHandler* newHandler = exceptionHandlerTableBody
(t, newTable, i);
exceptionHandlerStart(newHandler)
= c->machineIp(exceptionHandlerStart(oldHandler))->value() - start;
exceptionHandlerEnd(newHandler)
= c->machineIp(exceptionHandlerEnd(oldHandler))->value() - start;
exceptionHandlerIp(newHandler)
= c->machineIp(exceptionHandlerIp(oldHandler))->value() - start;
exceptionHandlerCatchType(newHandler)
= exceptionHandlerCatchType(oldHandler);
}
set(t, code, CodeExceptionHandlerTable, newTable);
}
}
void
updateLineNumberTable(MyThread* t, Compiler* c, object code,
intptr_t start)
{
object oldTable = codeLineNumberTable(t, code);
if (oldTable) {
PROTECT(t, code);
PROTECT(t, oldTable);
unsigned length = lineNumberTableLength(t, oldTable);
object newTable = makeLineNumberTable(t, length, false);
for (unsigned i = 0; i < length; ++i) {
LineNumber* oldLine = lineNumberTableBody(t, oldTable, i);
LineNumber* newLine = lineNumberTableBody(t, newTable, i);
lineNumberIp(newLine)
= c->machineIp(lineNumberIp(oldLine))->value() - start;
lineNumberLine(newLine) = lineNumberLine(oldLine);
}
set(t, code, CodeLineNumberTable, newTable);
}
}
void
printSet(uintptr_t m)
{
for (unsigned i = 0; i < 16; ++i) {
if ((m >> i) & 1) {
fprintf(stderr, "1");
} else {
fprintf(stderr, "_");
}
}
}
unsigned
calculateFrameMaps(MyThread* t, Context* context, uintptr_t* originalRoots,
unsigned eventIndex)
{
// for each instruction with more than one predecessor, and for each
// stack position, determine if there exists a path to that
// instruction such that there is not an object pointer left at that
// stack position (i.e. it is uninitialized or contains primitive
// data).
unsigned mapSize = frameMapSizeInWords(t, context->method);
uintptr_t roots[mapSize];
if (originalRoots) {
memcpy(roots, originalRoots, mapSize * BytesPerWord);
} else {
memset(roots, 0, mapSize * BytesPerWord);
}
int32_t ip = -1;
// invariant: for each stack position, roots contains a zero at that
// position if there exists some path to the current instruction
// such that there is definitely not an object pointer at that
// position. Otherwise, roots contains a one at that position,
// meaning either all known paths result in an object pointer at
// that position, or the contents of that position are as yet
// unknown.
while (eventIndex < context->eventLog.length()) {
Event e = static_cast<Event>(context->eventLog.get(eventIndex++));
switch (e) {
case PushEvent: {
eventIndex = calculateFrameMaps(t, context, roots, eventIndex);
} break;
case PopEvent:
return eventIndex;
case IpEvent: {
ip = context->eventLog.get2(eventIndex);
if (DebugFrameMaps) {
fprintf(stderr, " roots at ip %3d: ", ip);
printSet(*roots);
fprintf(stderr, "\n");
}
uintptr_t* tableRoots = context->rootTable + (ip * mapSize);
if (context->visitTable[ip] > 1) {
for (unsigned wi = 0; wi < mapSize; ++wi) {
tableRoots[wi] &= roots[wi];
roots[wi] &= tableRoots[wi];
}
if (DebugFrameMaps) {
fprintf(stderr, "table roots at ip %3d: ", ip);
printSet(*tableRoots);
fprintf(stderr, "\n");
}
} else {
memcpy(tableRoots, roots, mapSize * BytesPerWord);
}
eventIndex += 2;
} break;
case MarkEvent: {
unsigned i = context->eventLog.get2(eventIndex);
markBit(roots, i);
eventIndex += 2;
} break;
case ClearEvent: {
unsigned i = context->eventLog.get2(eventIndex);
clearBit(roots, i);
eventIndex += 2;
} break;
case TraceEvent: {
eventIndex += BytesPerWord;
} break;
default: abort(t);
}
}
return eventIndex;
}
unsigned
updateTraceElements(MyThread* t, Context* context, uintptr_t* originalRoots,
unsigned eventIndex)
{
unsigned mapSize = frameMapSizeInWords(t, context->method);
uintptr_t roots[mapSize];
if (originalRoots) {
memcpy(roots, originalRoots, mapSize * BytesPerWord);
} else {
memset(roots, 0, mapSize * BytesPerWord);
}
int32_t ip = -1;
while (eventIndex < context->eventLog.length()) {
Event e = static_cast<Event>(context->eventLog.get(eventIndex++));
switch (e) {
case PushEvent: {
eventIndex = updateTraceElements(t, context, roots, eventIndex);
} break;
case PopEvent:
return eventIndex;
case IpEvent: {
ip = context->eventLog.get2(eventIndex);
if (DebugFrameMaps) {
fprintf(stderr, " map at ip %3d: ", ip);
printSet(*roots);
fprintf(stderr, "\n");
}
if (context->visitTable[ip] > 1) {
uintptr_t* tableRoots = context->rootTable + (ip * mapSize);
for (unsigned wi = 0; wi < mapSize; ++wi) {
roots[wi] &= tableRoots[wi];
}
}
eventIndex += 2;
} break;
case MarkEvent: {
unsigned i = context->eventLog.get2(eventIndex);
markBit(roots, i);
eventIndex += 2;
} break;
case ClearEvent: {
unsigned i = context->eventLog.get2(eventIndex);
clearBit(roots, i);
eventIndex += 2;
} break;
case TraceEvent: {
TraceElement* te; context->eventLog.get(eventIndex, &te, BytesPerWord);
memcpy(te->map, roots, mapSize * BytesPerWord);
eventIndex += BytesPerWord;
} break;
default: abort(t);
}
}
return eventIndex;
}
Allocator*
codeAllocator(MyThread* t);
object
allocateCode(MyThread* t, unsigned codeSizeInBytes)
{
unsigned count = ceiling(codeSizeInBytes, BytesPerWord);
unsigned size = count + singletonMaskSize(count);
object result = allocate3
(t, codeAllocator(t), Machine::ImmortalAllocation,
SingletonBody + (size * BytesPerWord), true, true);
initSingleton(t, result, size, true);
mark(t, result, 0);
singletonMask(t, result)[0] = 1;
return result;
}
object
finish(MyThread* t, Assembler* a, const char* name)
{
object result = allocateCode(t, a->length());
uint8_t* start = reinterpret_cast<uint8_t*>(&singletonValue(t, result, 0));
a->writeTo(start);
if (Verbose) {
logCompile(start, a->length(), 0, name, 0);
}
return result;
}
object
finish(MyThread* t, Context* context)
{
Compiler* c = context->compiler;
unsigned codeSize = c->compile();
object result = allocateCode(t, codeSize + c->poolSize());
uint8_t* start = reinterpret_cast<uint8_t*>(&singletonValue(t, result, 0));
c->writeTo(start);
PROTECT(t, result);
unsigned mapSize = frameMapSizeInWords(t, context->method);
for (TraceElement* p = context->traceLog; p; p = p->next) {
object node = makeTraceNode
(t, p->address->value(), 0, context->method, p->target,
p->virtualCall, mapSize, false);
if (mapSize) {
memcpy(&traceNodeMap(t, node, 0), p->map, mapSize * BytesPerWord);
}
insertTraceNode(t, node);
}
for (PoolElement* p = context->objectPool; p; p = p->next) {
intptr_t offset = p->address->value()
- reinterpret_cast<intptr_t>(start);
singletonMarkObject(t, result, offset / BytesPerWord);
set(t, result, SingletonBody + offset, p->value);
}
updateExceptionHandlerTable(t, c, methodCode(t, context->method),
reinterpret_cast<intptr_t>(start));
updateLineNumberTable(t, c, methodCode(t, context->method),
reinterpret_cast<intptr_t>(start));
if (Verbose) {
logCompile
(start, codeSize,
reinterpret_cast<const char*>
(&byteArrayBody(t, className(t, methodClass(t, context->method)), 0)),
reinterpret_cast<const char*>
(&byteArrayBody(t, methodName(t, context->method), 0)),
reinterpret_cast<const char*>
(&byteArrayBody(t, methodSpec(t, context->method), 0)));
}
// for debugging:
if (//false and
strcmp
(reinterpret_cast<const char*>
(&byteArrayBody(t, className(t, methodClass(t, context->method)), 0)),
"Misc") == 0 and
strcmp
(reinterpret_cast<const char*>
(&byteArrayBody(t, methodName(t, context->method), 0)),
"main") == 0)
{
asm("int3");
}
return result;
}
object
compile(MyThread* t, Context* context)
{
Compiler* c = context->compiler;
// fprintf(stderr, "compiling %s.%s%s\n",
// &byteArrayBody(t, className(t, methodClass(t, context->method)), 0),
// &byteArrayBody(t, methodName(t, context->method), 0),
// &byteArrayBody(t, methodSpec(t, context->method), 0));
unsigned footprint = methodParameterFootprint(t, context->method);
unsigned locals = localSize(t, context->method);
c->init(codeLength(t, methodCode(t, context->method)), locals - footprint);
uint8_t stackMap[codeMaxStack(t, methodCode(t, context->method))];
Frame frame(context, stackMap);
unsigned index = 0;
if ((methodFlags(t, context->method) & ACC_STATIC) == 0) {
frame.set(index++, Frame::Object);
}
for (MethodSpecIterator it
(t, reinterpret_cast<const char*>
(&byteArrayBody(t, methodSpec(t, context->method), 0)));
it.hasNext();)
{
switch (*it.next()) {
case 'L':
case '[':
frame.set(index++, Frame::Object);
break;
case 'J':
case 'D':
frame.set(index++, Frame::Long);
frame.set(index++, Frame::Long);
break;
default:
frame.set(index++, Frame::Integer);
break;
}
}
handleEntrance(t, &frame);
compile(t, &frame, 0);
if (UNLIKELY(t->exception)) return 0;
unsigned eventIndex = calculateFrameMaps(t, context, 0, 0);
object eht = codeExceptionHandlerTable(t, methodCode(t, context->method));
if (eht) {
PROTECT(t, eht);
unsigned visitCount = exceptionHandlerTableLength(t, eht);
bool visited[visitCount];
memset(visited, 0, visitCount);
while (visitCount) {
bool progress = false;
for (unsigned i = 0; i < exceptionHandlerTableLength(t, eht); ++i) {
ExceptionHandler* eh = exceptionHandlerTableBody(t, eht, i);
unsigned start = exceptionHandlerStart(eh);
if (not visited[i] and context->visitTable[start]) {
-- visitCount;
visited[i] = true;
progress = true;
uint8_t stackMap[codeMaxStack(t, methodCode(t, context->method))];
Frame frame2(&frame, stackMap);
uintptr_t* roots = context->rootTable
+ (start * frameMapSizeInWords(t, context->method));
for (unsigned i = 0; i < localSize(t, context->method); ++ i) {
if (getBit(roots, i)) {
frame2.set(i, Frame::Object);
} else {
frame2.set(i, Frame::Integer);
}
}
frame2.pushObject();
for (unsigned i = 1;
i < codeMaxStack(t, methodCode(t, context->method));
++i)
{
frame2.set(localSize(t, context->method) + i, Frame::Integer);
}
compile(t, &frame2, exceptionHandlerIp(eh));
if (UNLIKELY(t->exception)) return 0;
eventIndex = calculateFrameMaps(t, context, 0, eventIndex);
}
}
assert(t, progress);
}
}
updateTraceElements(t, context, 0, 0);
return finish(t, context);
}
void
compile(MyThread* t, object method);
void*
compileMethod2(MyThread* t)
{
object node = findTraceNode(t, *static_cast<void**>(t->stack));
PROTECT(t, node);
object target = traceNodeTarget(t, node);
PROTECT(t, target);
if (traceNodeVirtualCall(t, node)) {
target = resolveTarget(t, t->stack, target);
}
if (LIKELY(t->exception == 0)) {
compile(t, target);
}
if (UNLIKELY(t->exception)) {
return 0;
} else {
if (not traceNodeVirtualCall(t, node)) {
Context context(t);
context.assembler->updateCall
(reinterpret_cast<void*>(traceNodeAddress(t, node)),
&singletonValue(t, methodCompiled(t, target), 0));
}
return &singletonValue(t, methodCompiled(t, target), 0);
}
}
void* FORCE_ALIGN
compileMethod(MyThread* t)
{
void* r = compileMethod2(t);
if (UNLIKELY(t->exception)) {
unwind(t);
} else {
return r;
}
}
uint64_t
invokeNative2(MyThread* t, object method)
{
PROTECT(t, method);
assert(t, methodFlags(t, method) & ACC_NATIVE);
initClass(t, methodClass(t, method));
if (UNLIKELY(t->exception)) return 0;
if (methodCode(t, method) == 0) {
void* function = resolveNativeMethod(t, method);
if (UNLIKELY(function == 0)) {
object message = makeString
(t, "%s.%s%s",
&byteArrayBody(t, className(t, methodClass(t, method)), 0),
&byteArrayBody(t, methodName(t, method), 0),
&byteArrayBody(t, methodSpec(t, method), 0));
t->exception = makeUnsatisfiedLinkError(t, message);
return 0;
}
object p = makePointer(t, function);
set(t, method, MethodCode, p);
}
object class_ = methodClass(t, method);
PROTECT(t, class_);
unsigned footprint = methodParameterFootprint(t, method) + 1;
if (methodFlags(t, method) & ACC_STATIC) {
++ footprint;
}
unsigned count = methodParameterCount(t, method) + 2;
uintptr_t args[footprint];
unsigned argOffset = 0;
uint8_t types[count];
unsigned typeOffset = 0;
args[argOffset++] = reinterpret_cast<uintptr_t>(t);
types[typeOffset++] = POINTER_TYPE;
uintptr_t* sp = static_cast<uintptr_t*>(t->stack)
+ methodParameterFootprint(t, method);
if (methodFlags(t, method) & ACC_STATIC) {
args[argOffset++] = reinterpret_cast<uintptr_t>(&class_);
} else {
args[argOffset++] = reinterpret_cast<uintptr_t>(sp--);
}
types[typeOffset++] = POINTER_TYPE;
MethodSpecIterator it
(t, reinterpret_cast<const char*>
(&byteArrayBody(t, methodSpec(t, method), 0)));
while (it.hasNext()) {
unsigned type = types[typeOffset++]
= fieldType(t, fieldCode(t, *it.next()));
switch (type) {
case INT8_TYPE:
case INT16_TYPE:
case INT32_TYPE:
case FLOAT_TYPE:
args[argOffset++] = *(sp--);
break;
case INT64_TYPE:
case DOUBLE_TYPE: {
memcpy(args + argOffset, sp - 1, 8);
argOffset += (8 / BytesPerWord);
sp -= 2;
} break;
case POINTER_TYPE: {
if (*sp) {
args[argOffset++] = reinterpret_cast<uintptr_t>(sp);
} else {
args[argOffset++] = 0;
}
-- sp;
} break;
default: abort(t);
}
}
void* function = pointerValue(t, methodCode(t, method));
unsigned returnCode = methodReturnCode(t, method);
unsigned returnType = fieldType(t, returnCode);
uint64_t result;
if (DebugNatives) {
fprintf(stderr, "invoke native method %s.%s\n",
&byteArrayBody(t, className(t, methodClass(t, method)), 0),
&byteArrayBody(t, methodName(t, method), 0));
}
if (methodFlags(t, method) & ACC_SYNCHRONIZED) {
if (methodFlags(t, method) & ACC_STATIC) {
acquire(t, methodClass(t, method));
} else {
acquire(t, *reinterpret_cast<object*>(args[0]));
}
}
Reference* reference = t->reference;
{ ENTER(t, Thread::IdleState);
result = t->m->system->call
(function,
args,
types,
count,
footprint * BytesPerWord,
returnType);
}
if (methodFlags(t, method) & ACC_SYNCHRONIZED) {
if (methodFlags(t, method) & ACC_STATIC) {
release(t, methodClass(t, method));
} else {
release(t, *reinterpret_cast<object*>(args[0]));
}
}
if (DebugNatives) {
fprintf(stderr, "return from native method %s.%s\n",
&byteArrayBody(t, className(t, methodClass(t, method)), 0),
&byteArrayBody(t, methodName(t, method), 0));
}
if (LIKELY(t->exception == 0)) {
switch (returnCode) {
case ByteField:
case BooleanField:
result = static_cast<int8_t>(result);
break;
case CharField:
result = static_cast<uint16_t>(result);
break;
case ShortField:
result = static_cast<int16_t>(result);
break;
case FloatField:
case IntField:
result = static_cast<int32_t>(result);
break;
case LongField:
case DoubleField:
result = result;
break;
case ObjectField:
result = static_cast<uintptr_t>(result) ? *reinterpret_cast<uintptr_t*>
(static_cast<uintptr_t>(result)) : 0;
break;
case VoidField:
result = 0;
break;
default: abort(t);
}
} else {
result = 0;
}
while (t->reference != reference) {
dispose(t, t->reference);
}
return result;
}
uint64_t FORCE_ALIGN
invokeNative(MyThread* t)
{
object node = findTraceNode(t, *static_cast<void**>(t->stack));
object target = traceNodeTarget(t, node);
if (traceNodeVirtualCall(t, node)) {
target = resolveTarget(t, t->stack, target);
}
uint64_t result = 0;
if (LIKELY(t->exception == 0)) {
result = invokeNative2(t, target);
}
if (UNLIKELY(t->exception)) {
unwind(t);
} else {
return result;
}
}
void
visitStackAndLocals(MyThread* t, Heap::Visitor* v, void* base, object node,
void* calleeBase, unsigned argumentFootprint)
{
object method = traceNodeMethod(t, node);
unsigned count;
if (calleeBase) {
unsigned parameterFootprint = methodParameterFootprint(t, method);
unsigned height = static_cast<uintptr_t*>(base)
- static_cast<uintptr_t*>(calleeBase) - 2;
count = parameterFootprint + height - argumentFootprint;
} else {
count = frameSize(t, method);
}
if (count) {
uintptr_t* map = &traceNodeMap(t, node, 0);
for (unsigned i = 0; i < count; ++i) {
if (getBit(map, i)) {
v->visit(localObject(t, base, method, i));
}
}
}
}
void
visitStack(MyThread* t, Heap::Visitor* v)
{
void* ip = t->ip;
void* base = t->base;
void** stack = static_cast<void**>(t->stack);
if (ip == 0 and stack) {
ip = *stack;
}
MyThread::CallTrace* trace = t->trace;
void* calleeBase = 0;
unsigned argumentFootprint = 0;
while (stack) {
object node = findTraceNode(t, ip);
if (node) {
PROTECT(t, node);
visitStackAndLocals(t, v, base, node, calleeBase, argumentFootprint);
calleeBase = base;
argumentFootprint = methodParameterFootprint
(t, traceNodeMethod(t, node));
stack = static_cast<void**>(base) + 1;
if (stack) {
ip = *stack;
}
base = *static_cast<void**>(base);
} else if (trace) {
calleeBase = 0;
argumentFootprint = 0;
base = trace->base;
stack = static_cast<void**>(trace->stack);
if (stack) {
ip = *stack;
}
trace = trace->next;
} else {
break;
}
}
}
void
saveStackAndBase(MyThread* t, Assembler* a)
{
Assembler::Register base(a->base());
Assembler::Memory baseDst(a->thread(), difference(&(t->base), t));
a->apply(Move, BytesPerWord, Register, &base, Memory, &baseDst);
Assembler::Register stack(a->stack());
Assembler::Memory stackDst(a->thread(), difference(&(t->base), t));
a->apply(Move, BytesPerWord, Register, &stack, Memory, &stackDst);
}
void
pushThread(MyThread*, Assembler* a)
{
Assembler::Register thread(a->thread());
if (a->argumentRegisterCount()) {
Assembler::Register arg(a->argumentRegister(0));
a->apply(Move, BytesPerWord, Register, &thread, Register, &arg);
} else {
a->apply(Push, BytesPerWord, Register, &thread);
}
}
object
compileDefault(MyThread* t, Assembler* a)
{
saveStackAndBase(t, a);
pushThread(t, a);
ResolvedPromise promise(reinterpret_cast<intptr_t>(compileMethod));
Assembler::Constant proc(&promise);
a->apply(Call, BytesPerWord, Constant, &proc);
Assembler::Register result(a->returnLow());
a->apply(Jump, BytesPerWord, Register, &result);
return finish(t, a, "default");
}
object
compileNative(MyThread* t, Assembler* a)
{
saveStackAndBase(t, a);
pushThread(t, a);
ResolvedPromise promise(reinterpret_cast<intptr_t>(invokeNative));
Assembler::Constant proc(&promise);
a->apply(Call, BytesPerWord, Constant, &proc);
a->apply(Return);
return finish(t, a, "native");
}
class ArgumentList {
public:
ArgumentList(Thread* t, uintptr_t* array, bool* objectMask, object this_,
const char* spec, bool indirectObjects, va_list arguments):
t(static_cast<MyThread*>(t)),
array(array),
objectMask(objectMask),
position(0),
protector(this)
{
if (this_) {
addObject(this_);
}
for (MethodSpecIterator it(t, spec); it.hasNext();) {
switch (*it.next()) {
case 'L':
case '[':
if (indirectObjects) {
object* v = va_arg(arguments, object*);
addObject(v ? *v : 0);
} else {
addObject(va_arg(arguments, object));
}
break;
case 'J':
case 'D':
addLong(va_arg(arguments, uint64_t));
break;
default:
addInt(va_arg(arguments, uint32_t));
break;
}
}
}
ArgumentList(Thread* t, uintptr_t* array, bool* objectMask, object this_,
const char* spec, object arguments):
t(static_cast<MyThread*>(t)),
array(array),
objectMask(objectMask),
position(0),
protector(this)
{
if (this_) {
addObject(this_);
}
unsigned index = 0;
for (MethodSpecIterator it(t, spec); it.hasNext();) {
switch (*it.next()) {
case 'L':
case '[':
addObject(objectArrayBody(t, arguments, index++));
break;
case 'J':
case 'D':
addLong(cast<int64_t>(objectArrayBody(t, arguments, index++),
BytesPerWord));
break;
default:
addInt(cast<int32_t>(objectArrayBody(t, arguments, index++),
BytesPerWord));
break;
}
}
}
void addObject(object v) {
array[position] = reinterpret_cast<uintptr_t>(v);
objectMask[position] = true;
++ position;
}
void addInt(uintptr_t v) {
array[position] = v;
objectMask[position] = false;
++ position;
}
void addLong(uint64_t v) {
if (BytesPerWord == 8) {
memcpy(array + position + 1, &v, 8);
} else {
// push words in reverse order, since they will be switched back
// when pushed on the stack:
array[position] = v >> 32;
array[position + 1] = v;
}
objectMask[position] = false;
objectMask[position + 1] = false;
position += 2;
}
MyThread* t;
uintptr_t* array;
bool* objectMask;
unsigned position;
class MyProtector: public Thread::Protector {
public:
MyProtector(ArgumentList* list): Protector(list->t), list(list) { }
virtual void visit(Heap::Visitor* v) {
for (unsigned i = 0; i < list->position; ++i) {
if (list->objectMask[i]) {
v->visit(reinterpret_cast<object*>(list->array + i));
}
}
}
ArgumentList* list;
} protector;
};
object
invoke(Thread* thread, object method, ArgumentList* arguments)
{
MyThread* t = static_cast<MyThread*>(thread);
unsigned returnCode = methodReturnCode(t, method);
unsigned returnType = fieldType(t, returnCode);
uint64_t result;
{ MyThread::CallTrace trace(t);
result = vmInvoke
(t, &singletonValue(t, methodCompiled(t, method), 0), arguments->array,
arguments->position, returnType);
}
object r;
switch (returnCode) {
case ByteField:
case BooleanField:
case CharField:
case ShortField:
case FloatField:
case IntField:
r = makeInt(t, result);
break;
case LongField:
case DoubleField:
r = makeLong(t, result);
break;
case ObjectField:
r = reinterpret_cast<object>(result);
break;
case VoidField:
r = 0;
break;
default:
abort(t);
};
return r;
}
class SegFaultHandler: public System::SignalHandler {
public:
SegFaultHandler(): m(0) { }
virtual bool handleSignal(void** ip, void** base, void** stack,
void** thread)
{
MyThread* t = static_cast<MyThread*>(m->localThread->get());
if (t->state == Thread::ActiveState) {
object node = findTraceNode(t, *ip);
if (node) {
t->ip = *ip;
t->base = *base;
t->stack = *stack;
t->exception = makeNullPointerException(t);
findUnwindTarget(t, ip, base, stack);
*thread = t;
return true;
}
}
return false;
}
Machine* m;
};
class MyProcessor: public Processor {
public:
MyProcessor(System* s, Allocator* allocator):
s(s),
allocator(allocator),
defaultCompiled(0),
nativeCompiled(0),
addressTable(0),
addressCount(0),
indirectCaller(0),
indirectCallerSize(0),
codeAllocator(s, allocator, true, 64 * 1024)
{ }
virtual Thread*
makeThread(Machine* m, object javaThread, Thread* parent)
{
MyThread* t = new (m->heap->allocate(sizeof(MyThread), false))
MyThread(m, javaThread, parent);
t->init();
return t;
}
object getDefaultCompiled(MyThread* t) {
if (defaultCompiled == 0) {
Context context(t);
defaultCompiled = compileDefault(t, context.assembler);
}
return defaultCompiled;
}
object getNativeCompiled(MyThread* t) {
if (nativeCompiled == 0) {
Context context(t);
nativeCompiled = compileNative(t, context.assembler);
}
return nativeCompiled;
}
virtual object
makeMethod(vm::Thread* t,
uint8_t vmFlags,
uint8_t returnCode,
uint8_t parameterCount,
uint8_t parameterFootprint,
uint16_t flags,
uint16_t offset,
object name,
object spec,
object class_,
object code)
{
return vm::makeMethod
(t, vmFlags, returnCode, parameterCount, parameterFootprint, flags,
offset, name, spec, class_, code,
getDefaultCompiled(static_cast<MyThread*>(t)));
}
virtual object
makeClass(vm::Thread* t,
uint16_t flags,
uint8_t vmFlags,
uint8_t arrayDimensions,
uint16_t fixedSize,
uint16_t arrayElementSize,
object objectMask,
object name,
object super,
object interfaceTable,
object virtualTable,
object fieldTable,
object methodTable,
object staticTable,
object loader,
unsigned vtableLength)
{
return vm::makeClass
(t, flags, vmFlags, arrayDimensions, fixedSize, arrayElementSize,
objectMask, name, super, interfaceTable, virtualTable, fieldTable,
methodTable, staticTable, loader, vtableLength, false);
}
virtual void
initVtable(Thread* t, object c)
{
void* compiled = &singletonBody
(t, getDefaultCompiled(static_cast<MyThread*>(t)), 0);
for (unsigned i = 0; i < classLength(t, c); ++i) {
classVtable(t, c, i) = compiled;
}
}
virtual void
initClass(Thread* t, object c)
{
PROTECT(t, c);
ACQUIRE(t, t->m->classLock);
if (classVmFlags(t, c) & NeedInitFlag
and (classVmFlags(t, c) & InitFlag) == 0)
{
classVmFlags(t, c) |= InitFlag;
invoke(t, classInitializer(t, c), 0);
if (t->exception) {
t->exception = makeExceptionInInitializerError(t, t->exception);
}
classVmFlags(t, c) &= ~(NeedInitFlag | InitFlag);
}
}
virtual void
visitObjects(Thread* vmt, Heap::Visitor* v)
{
MyThread* t = static_cast<MyThread*>(vmt);
if (t == t->m->rootThread) {
v->visit(&defaultCompiled);
v->visit(&nativeCompiled);
v->visit(&addressTable);
}
for (Reference* r = t->reference; r; r = r->next) {
v->visit(&(r->target));
}
visitStack(t, v);
}
virtual void
walkStack(Thread* vmt, StackVisitor* v)
{
MyThread* t = static_cast<MyThread*>(vmt);
MyStackWalker walker(t);
walker.walk(v);
}
virtual int
lineNumber(Thread* vmt, object method, int ip)
{
return findLineNumber(static_cast<MyThread*>(vmt), method, ip);
}
virtual object*
makeLocalReference(Thread* vmt, object o)
{
if (o) {
MyThread* t = static_cast<MyThread*>(vmt);
PROTECT(t, o);
Reference* r = new (t->m->heap->allocate(sizeof(Reference), false))
Reference(o, &(t->reference));
return &(r->target);
} else {
return 0;
}
}
virtual void
disposeLocalReference(Thread* t, object* r)
{
if (r) {
vm::dispose(t, reinterpret_cast<Reference*>(r));
}
}
virtual object
invokeArray(Thread* t, object method, object this_, object arguments)
{
assert(t, t->state == Thread::ActiveState
or t->state == Thread::ExclusiveState);
assert(t, ((methodFlags(t, method) & ACC_STATIC) == 0) xor (this_ == 0));
const char* spec = reinterpret_cast<char*>
(&byteArrayBody(t, methodSpec(t, method), 0));
unsigned size = methodParameterFootprint(t, method);
uintptr_t array[size];
bool objectMask[size];
ArgumentList list(t, array, objectMask, this_, spec, arguments);
PROTECT(t, method);
compile(static_cast<MyThread*>(t), method);
if (LIKELY(t->exception == 0)) {
return ::invoke(t, method, &list);
}
return 0;
}
virtual object
invokeList(Thread* t, object method, object this_, bool indirectObjects,
va_list arguments)
{
assert(t, t->state == Thread::ActiveState
or t->state == Thread::ExclusiveState);
assert(t, ((methodFlags(t, method) & ACC_STATIC) == 0) xor (this_ == 0));
const char* spec = reinterpret_cast<char*>
(&byteArrayBody(t, methodSpec(t, method), 0));
unsigned size = methodParameterFootprint(t, method);
uintptr_t array[size];
bool objectMask[size];
ArgumentList list
(t, array, objectMask, this_, spec, indirectObjects, arguments);
PROTECT(t, method);
compile(static_cast<MyThread*>(t), method);
if (LIKELY(t->exception == 0)) {
return ::invoke(t, method, &list);
}
return 0;
}
virtual object
invokeList(Thread* t, const char* className, const char* methodName,
const char* methodSpec, object this_, va_list arguments)
{
assert(t, t->state == Thread::ActiveState
or t->state == Thread::ExclusiveState);
unsigned size = parameterFootprint(t, methodSpec, false);
uintptr_t array[size];
bool objectMask[size];
ArgumentList list
(t, array, objectMask, this_, methodSpec, false, arguments);
object method = resolveMethod(t, className, methodName, methodSpec);
if (LIKELY(t->exception == 0)) {
assert(t, ((methodFlags(t, method) & ACC_STATIC) == 0) xor (this_ == 0));
PROTECT(t, method);
compile(static_cast<MyThread*>(t), method);
if (LIKELY(t->exception == 0)) {
return ::invoke(t, method, &list);
}
}
return 0;
}
virtual void dispose(Thread* vmt) {
MyThread* t = static_cast<MyThread*>(vmt);
while (t->reference) {
vm::dispose(t, t->reference);
}
t->m->heap->free(t, sizeof(*t), false);
}
virtual void dispose() {
codeAllocator.dispose();
s->handleSegFault(0);
allocator->free(this, sizeof(*this), false);
}
System* s;
Allocator* allocator;
object defaultCompiled;
object nativeCompiled;
object addressTable;
unsigned addressCount;
uint8_t* indirectCaller;
unsigned indirectCallerSize;
SegFaultHandler segFaultHandler;
Zone codeAllocator;
};
MyProcessor*
processor(MyThread* t)
{
MyProcessor* p = static_cast<MyProcessor*>(t->m->processor);
if (p->addressTable == 0) {
ACQUIRE(t, t->m->classLock);
if (p->addressTable == 0) {
p->addressTable = makeArray(t, 128, true);
Context context(t);
Assembler* a = context.assembler;
saveStackAndBase(t, a);
Assembler::Register proc(a->returnLow());
a->apply(Jump, BytesPerWord, Register, &proc);
p->indirectCallerSize = a->length();
p->indirectCaller = static_cast<uint8_t*>
(p->codeAllocator.allocate(p->indirectCallerSize));
a->writeTo(p->indirectCaller);
if (Verbose) {
logCompile
(p->indirectCaller, p->indirectCallerSize, 0, "indirect caller", 0);
}
p->segFaultHandler.m = t->m;
expect(t, t->m->system->success
(t->m->system->handleSegFault(&(p->segFaultHandler))));
}
}
return p;
}
void
compile(MyThread* t, object method)
{
MyProcessor* p = processor(t);
if (methodCompiled(t, method) == p->getDefaultCompiled(t)) {
PROTECT(t, method);
ACQUIRE(t, t->m->classLock);
if (methodCompiled(t, method) == p->getDefaultCompiled(t)) {
initClass(t, methodClass(t, method));
if (UNLIKELY(t->exception)) return;
if (methodCompiled(t, method) == p->getDefaultCompiled(t)) {
object compiled;
if (methodFlags(t, method) & ACC_NATIVE) {
compiled = p->getNativeCompiled(t);
} else {
Context context(t, method, p->indirectCaller);
compiled = compile(t, &context);
}
set(t, method, MethodCompiled, compiled);
if (methodVirtual(t, method)) {
classVtable(t, methodClass(t, method), methodOffset(t, method))
= &singletonValue(t, compiled, 0);
}
}
}
}
}
object
findTraceNode(MyThread* t, void* address)
{
if (DebugTraces) {
fprintf(stderr, "find trace node %p\n", address);
}
MyProcessor* p = processor(t);
object table = p->addressTable;
intptr_t key = reinterpret_cast<intptr_t>(address);
unsigned index = static_cast<uintptr_t>(key)
& (arrayLength(t, table) - 1);
for (object n = arrayBody(t, table, index);
n; n = traceNodeNext(t, n))
{
intptr_t k = traceNodeAddress(t, n);
if (k == key) {
return n;
}
}
return 0;
}
object
resizeTable(MyThread* t, object oldTable, unsigned newLength)
{
PROTECT(t, oldTable);
object oldNode = 0;
PROTECT(t, oldNode);
object newTable = makeArray(t, newLength, true);
PROTECT(t, newTable);
for (unsigned i = 0; i < arrayLength(t, oldTable); ++i) {
for (oldNode = arrayBody(t, oldTable, i);
oldNode;
oldNode = traceNodeNext(t, oldNode))
{
intptr_t k = traceNodeAddress(t, oldNode);
unsigned index = k & (newLength - 1);
object newNode = makeTraceNode
(t, traceNodeAddress(t, oldNode),
arrayBody(t, newTable, index),
traceNodeMethod(t, oldNode),
traceNodeTarget(t, oldNode),
traceNodeVirtualCall(t, oldNode),
traceNodeLength(t, oldNode),
false);
if (traceNodeLength(t, oldNode)) {
memcpy(&traceNodeMap(t, newNode, 0),
&traceNodeMap(t, oldNode, 0),
traceNodeLength(t, oldNode) * BytesPerWord);
}
set(t, newTable, ArrayBody + (index * BytesPerWord), newNode);
}
}
return newTable;
}
void
insertTraceNode(MyThread* t, object node)
{
if (DebugTraces) {
fprintf(stderr, "insert trace node %p\n",
reinterpret_cast<void*>(traceNodeAddress(t, node)));
}
MyProcessor* p = processor(t);
PROTECT(t, node);
++ p->addressCount;
if (p->addressCount >= arrayLength(t, p->addressTable) * 2) {
p->addressTable = resizeTable
(t, p->addressTable, arrayLength(t, p->addressTable) * 2);
}
intptr_t key = traceNodeAddress(t, node);
unsigned index = static_cast<uintptr_t>(key)
& (arrayLength(t, p->addressTable) - 1);
set(t, node, TraceNodeNext, arrayBody(t, p->addressTable, index));
set(t, p->addressTable, ArrayBody + (index * BytesPerWord), node);
}
Allocator*
codeAllocator(MyThread* t) {
return &(processor(t)->codeAllocator);
}
} // namespace
namespace vm {
Processor*
makeProcessor(System* system, Allocator* allocator)
{
return new (allocator->allocate(sizeof(MyProcessor), false))
MyProcessor(system, allocator);
}
} // namespace vm