corda/src/compile.cpp
2007-12-16 16:52:38 -07:00

3960 lines
89 KiB
C++

#include "machine.h"
#include "util.h"
#include "vector.h"
#include "process.h"
#include "compiler.h"
using namespace vm;
extern "C" uint64_t
vmInvoke(void* thread, void* function, void* stack, unsigned stackSize,
unsigned returnType);
extern "C" void
vmCall();
extern "C" void NO_RETURN
vmJump(void* address, void* base, void* stack, void* thread);
namespace {
const bool Verbose = true;
const bool DebugTraces = false;
class MyThread: public Thread {
public:
class CallTrace {
public:
CallTrace(MyThread* t):
t(t),
base(t->base),
stack(t->stack),
next(t->trace)
{
t->trace = this;
t->base = 0;
t->stack = 0;
}
~CallTrace() {
t->stack = stack;
t->base = base;
t->trace = next;
}
MyThread* t;
void* base;
void* stack;
CallTrace* next;
};
MyThread(Machine* m, object javaThread, Thread* parent):
Thread(m, javaThread, parent),
base(0),
stack(0),
trace(0),
reference(0)
{ }
void* base;
void* stack;
CallTrace* trace;
Reference* reference;
};
object
resolveTarget(MyThread* t, void* stack, object method)
{
if (method and methodVirtual(t, method)) {
unsigned parameterFootprint = methodParameterFootprint(t, method);
object class_ = objectClass
(t, reinterpret_cast<object*>(stack)[parameterFootprint]);
if (classVmFlags(t, class_) & BootstrapFlag) {
resolveClass(t, className(t, class_));
if (UNLIKELY(t->exception)) return 0;
}
if (classFlags(t, methodClass(t, method)) & ACC_INTERFACE) {
return findInterfaceMethod(t, method, class_);
} else {
return findMethod(t, method, class_);
}
}
return method;
}
object
findTraceNode(MyThread* t, void* address);
void
insertTraceNode(MyThread* t, object node);
class MyStackWalker: public Processor::StackWalker {
public:
class MyProtector: public Thread::Protector {
public:
MyProtector(MyStackWalker* walker):
Protector(walker->t), walker(walker)
{ }
virtual void visit(Heap::Visitor* v) {
v->visit(&(walker->node));
v->visit(&(walker->nativeMethod));
}
MyStackWalker* walker;
};
MyStackWalker(MyThread* t):
t(t),
base(t->base),
stack(t->stack),
trace(t->trace),
node(stack ? findTraceNode(t, *static_cast<void**>(stack)) : 0),
nativeMethod(resolveNativeMethod(t, stack, node)),
protector(this)
{ }
MyStackWalker(MyStackWalker* w):
t(w->t),
base(w->base),
stack(w->stack),
trace(w->trace),
node(w->node),
nativeMethod(w->nativeMethod),
protector(this)
{ }
static object resolveNativeMethod(MyThread* t, void* stack, object node) {
if (node) {
object target = resolveTarget(t, stack, traceNodeTarget(t, node));
if (target and methodFlags(t, target) & ACC_NATIVE) {
return target;
}
}
return 0;
}
virtual void walk(Processor::StackVisitor* v) {
if (stack == 0) {
return;
}
if (not v->visit(this)) {
return;
}
for (MyStackWalker it(this); it.next();) {
MyStackWalker walker(it);
if (not v->visit(&walker)) {
break;
}
}
}
bool next() {
if (nativeMethod) {
nativeMethod = 0;
} else {
stack = static_cast<void**>(base) + 1;
base = *static_cast<void**>(base);
node = findTraceNode(t, *static_cast<void**>(stack));
if (node == 0) {
if (trace and trace->stack) {
base = trace->base;
stack = static_cast<void**>(trace->stack);
trace = trace->next;
node = findTraceNode(t, *static_cast<void**>(stack));
nativeMethod = resolveNativeMethod(t, stack, node);
} else {
return false;
}
}
}
return true;
}
virtual object method() {
if (nativeMethod) {
return nativeMethod;
} else {
return traceNodeMethod(t, node);
}
}
virtual int ip() {
if (nativeMethod) {
return 0;
} else {
intptr_t start = reinterpret_cast<intptr_t>
(&singletonValue(t, methodCompiled(t, traceNodeMethod(t, node)), 0));
return traceNodeAddress(t, node) - start;
}
}
virtual unsigned count() {
class Visitor: public Processor::StackVisitor {
public:
Visitor(): count(0) { }
virtual bool visit(Processor::StackWalker*) {
++ count;
return true;
}
unsigned count;
} v;
MyStackWalker walker(this);
walker.walk(&v);
return v.count;
}
MyThread* t;
void* base;
void* stack;
MyThread::CallTrace* trace;
object node;
object nativeMethod;
MyProtector protector;
};
uintptr_t*
makeCodeMask(MyThread* t, unsigned length)
{
unsigned size = ceiling(length, BytesPerWord) * BytesPerWord;
uintptr_t* mask = static_cast<uintptr_t*>(t->m->system->allocate(size));
memset(mask, 0, size);
return mask;
}
int
localOffset(MyThread* t, int v, object method)
{
int parameterFootprint = methodParameterFootprint(t, method) * BytesPerWord;
v *= BytesPerWord;
if (v < parameterFootprint) {
return (parameterFootprint - v - BytesPerWord) + (BytesPerWord * 2);
} else {
return -(v + BytesPerWord - parameterFootprint);
}
}
class PoolElement {
public:
PoolElement(object value, Promise* address):
value(value), address(address)
{ }
object value;
Promise* address;
};
class TraceElement {
public:
TraceElement(object target, Promise* machineIp, bool virtualCall):
target(target), machineIp(machineIp), virtualCall(virtualCall) { }
object target;
Promise* machineIp;
bool virtualCall;
uint8_t map[0];
};
class Frame {
public:
class MyProtector: public Thread::Protector {
public:
MyProtector(Frame* frame): Protector(frame->t), frame(frame) { }
virtual void visit(Heap::Visitor* v) {
v->visit(&(frame->method));
if (next == 0) {
Vector* pool = frame->objectPool;
for (unsigned i = 0; i < pool->length(); i += sizeof(PoolElement)) {
v->visit(&(pool->peek<PoolElement>(i)->value));
}
Vector* log = frame->traceLog;
unsigned traceSize = traceSizeInBytes(t, frame->method);
for (unsigned i = 0; i < log->length(); i += traceSize) {
v->visit(&(pool->peek<TraceElement>(i)->target));
}
}
}
Frame* frame;
};
Frame(MyThread* t, Compiler* c, object method, uintptr_t* map,
Vector* objectPool, Vector* traceLog):
next(0),
t(t),
c(c),
stack(0),
method(method),
map(map),
objectPool(objectPool),
traceLog(traceLog),
codeMask(makeCodeMask(t, codeLength(t, methodCode(t, method)))),
ip(0),
sp(localSize(t, method)),
protector(this)
{
memset(map, 0, mapSizeInBytes(t, method));
}
Frame(Frame* f, uintptr_t* map):
next(f),
t(f->t),
c(f->c),
stack(f->stack),
method(f->method),
map(map),
objectPool(f->objectPool),
traceLog(f->traceLog),
codeMask(f->codeMask),
ip(f->ip),
sp(f->sp),
protector(this)
{
memcpy(map, f->map, mapSizeInBytes(t, method));
}
~Frame() {
if (next == 0) {
t->m->system->free(codeMask);
}
}
Operand* append(object o) {
Promise* p = c->poolAppend(0);
new (objectPool->allocate(sizeof(PoolElement))) PoolElement(o, p);
return c->absolute(p);
}
static unsigned parameterFootprint(Thread* t, object method) {
return methodParameterFootprint(t, method);
}
static unsigned localSize(Thread* t, object method) {
return codeMaxLocals(t, methodCode(t, method))
- parameterFootprint(t, method);
}
static unsigned stackSize(Thread* t, object method) {
return codeMaxStack(t, methodCode(t, method));
}
static unsigned mapSize(Thread* t, object method) {
return stackSize(t, method) + localSize(t, method);
}
static unsigned mapSizeInWords(Thread* t, object method) {
return ceiling(mapSize(t, method), BytesPerWord);
}
static unsigned mapSizeInBytes(Thread* t, object method) {
return mapSizeInWords(t, method) * BytesPerWord;
}
static unsigned traceSizeInBytes(Thread* t, object method) {
return sizeof(TraceElement) + mapSizeInWords(t, method);
}
void pushedInt() {
assert(t, sp + 1 <= mapSize(t, method));
assert(t, getBit(map, sp) == 0);
++ sp;
}
void pushedObject() {
assert(t, sp + 1 <= mapSize(t, method));
markBit(map, sp++);
}
void popped(unsigned count) {
assert(t, sp >= count);
assert(t, sp - count >= localSize(t, method));
while (count) {
clearBit(map, -- sp);
-- count;
}
}
void poppedInt() {
assert(t, sp >= 1);
assert(t, sp - 1 >= localSize(t, method));
assert(t, getBit(map, sp - 1) == 0);
-- sp;
}
void poppedObject() {
assert(t, sp >= 1);
assert(t, sp - 1 >= localSize(t, method));
assert(t, getBit(map, sp - 1) != 0);
clearBit(map, -- sp);
}
void storedInt(unsigned index) {
if (index >= parameterFootprint(t, method)) {
assert(t, index - parameterFootprint(t, method) < localSize(t, method));
clearBit(map, index - parameterFootprint(t, method));
}
}
void storedObject(unsigned index) {
if (index >= parameterFootprint(t, method)) {
assert(t, index - parameterFootprint(t, method) < localSize(t, method));
markBit(map, index - parameterFootprint(t, method));
}
}
void dupped() {
assert(t, sp + 1 <= mapSize(t, method));
assert(t, sp - 1 >= localSize(t, method));
if (getBit(map, sp - 1)) {
markBit(map, sp);
}
++ sp;
}
void duppedX1() {
assert(t, sp + 1 <= mapSize(t, method));
assert(t, sp - 2 >= localSize(t, method));
unsigned b2 = getBit(map, sp - 2);
unsigned b1 = getBit(map, sp - 1);
if (b2) {
markBit(map, sp - 1);
} else {
clearBit(map, sp - 1);
}
if (b1) {
markBit(map, sp - 2);
markBit(map, sp);
} else {
clearBit(map, sp - 2);
}
++ sp;
}
void duppedX2() {
assert(t, sp + 1 <= mapSize(t, method));
assert(t, sp - 3 >= localSize(t, method));
unsigned b3 = getBit(map, sp - 3);
unsigned b2 = getBit(map, sp - 2);
unsigned b1 = getBit(map, sp - 1);
if (b3) {
markBit(map, sp - 2);
} else {
clearBit(map, sp - 2);
}
if (b2) {
markBit(map, sp - 1);
} else {
clearBit(map, sp - 1);
}
if (b1) {
markBit(map, sp - 3);
markBit(map, sp);
} else {
clearBit(map, sp - 3);
}
++ sp;
}
void dupped2() {
assert(t, sp + 2 <= mapSize(t, method));
assert(t, sp - 2 >= localSize(t, method));
unsigned b2 = getBit(map, sp - 2);
unsigned b1 = getBit(map, sp - 1);
if (b2) {
markBit(map, sp);
}
if (b1) {
markBit(map, sp + 1);
}
sp += 2;
}
void dupped2X1() {
assert(t, sp + 2 <= mapSize(t, method));
assert(t, sp - 3 >= localSize(t, method));
unsigned b3 = getBit(map, sp - 3);
unsigned b2 = getBit(map, sp - 2);
unsigned b1 = getBit(map, sp - 1);
if (b3) {
markBit(map, sp - 1);
} else {
clearBit(map, sp - 1);
}
if (b2) {
markBit(map, sp - 3);
markBit(map, sp);
} else {
clearBit(map, sp - 3);
}
if (b1) {
markBit(map, sp - 2);
markBit(map, sp + 1);
} else {
clearBit(map, sp - 2);
}
sp += 2;
}
void dupped2X2() {
assert(t, sp + 2 <= mapSize(t, method));
assert(t, sp - 4 >= localSize(t, method));
unsigned b4 = getBit(map, sp - 4);
unsigned b3 = getBit(map, sp - 3);
unsigned b2 = getBit(map, sp - 2);
unsigned b1 = getBit(map, sp - 1);
if (b4) {
markBit(map, sp - 2);
} else {
clearBit(map, sp - 2);
}
if (b3) {
markBit(map, sp - 1);
} else {
clearBit(map, sp - 1);
}
if (b2) {
markBit(map, sp - 4);
markBit(map, sp);
} else {
clearBit(map, sp - 4);
}
if (b1) {
markBit(map, sp - 3);
markBit(map, sp + 1);
} else {
clearBit(map, sp - 3);
}
sp += 2;
}
void swapped() {
assert(t, sp - 1 >= localSize(t, method));
assert(t, sp - 2 >= localSize(t, method));
bool savedBit = getBit(map, sp - 1);
if (getBit(map, sp - 2)) {
markBit(map, sp - 1);
} else {
clearBit(map, sp - 1);
}
if (savedBit) {
markBit(map, sp - 2);
} else {
clearBit(map, sp - 2);
}
}
void trace(object target, bool virtualCall) {
TraceElement* e = new (traceLog->allocate(traceSizeInBytes(t, method)))
TraceElement(target, c->machineIp(), virtualCall);
memcpy(e->map, map, mapSizeInWords(t, method) * BytesPerWord);
}
void trace() {
trace(0, false);
}
Operand* machineIp(unsigned logicalIp) {
return c->promiseConstant(c->machineIp(logicalIp));
}
void startLogicalIp(unsigned ip) {
c->startLogicalIp(ip);
this->ip = ip;
}
void pushInt(Operand* o) {
stack = c->push(stack, o);
pushedInt();
}
void pushObject(Operand* o) {
stack = c->push(stack, o);
pushedObject();
}
void pushObject() {
stack = c->push(stack, 1);
pushedObject();
}
void pushLong(Operand* o) {
stack = c->push(stack, c->select8(o));
if (BytesPerWord == 8) {
stack = c->push(stack, 1);
}
pushedInt();
pushedInt();
}
void pop(unsigned count) {
popped(count);
stack = c->pop(stack, count);
}
Operand* topInt() {
assert(t, sp >= 1);
assert(t, sp - 1 >= localSize(t, method));
assert(t, getBit(map, sp - 1) == 0);
return c->stack(stack, 0);
}
Operand* topLong() {
assert(t, sp >= 2);
assert(t, sp - 2 >= localSize(t, method));
assert(t, getBit(map, sp - 1) == 0);
assert(t, getBit(map, sp - 2) == 0);
return c->stack(stack, 1);
}
Operand* topObject() {
assert(t, sp >= 1);
assert(t, sp - 1 >= localSize(t, method));
assert(t, getBit(map, sp - 1) != 0);
return c->stack(stack, 0);
}
Operand* popInt() {
Operand* tmp = c->temporary();
popInt(tmp);
return tmp;
}
Operand* popLong() {
Operand* tmp = c->temporary();
popLong(tmp);
return tmp;
}
Operand* popObject() {
Operand* tmp = c->temporary();
popObject(tmp);
return tmp;
}
void popInt(Operand* o) {
stack = c->pop(stack, o);
poppedInt();
}
void popLong(Operand* o) {
if (BytesPerWord == 8) {
stack = c->pop(stack, 1);
}
stack = c->pop(stack, o);
poppedInt();
poppedInt();
}
void popObject(Operand* o) {
stack = c->pop(stack, o);
poppedObject();
}
void loadInt(unsigned index) {
assert(t, index < codeMaxLocals(t, methodCode(t, method)));
assert(t, index < parameterFootprint(t, method)
or getBit(map, index - parameterFootprint(t, method)) == 0);
pushInt(c->memory(c->base(), localOffset(t, index, method)));
}
void loadLong(unsigned index) {
assert(t, index < static_cast<unsigned>
(codeMaxLocals(t, methodCode(t, method)) - 1));
assert(t, index < parameterFootprint(t, method)
or getBit(map, index - parameterFootprint(t, method)) == 0);
assert(t, index < parameterFootprint(t, method)
or getBit(map, index + 1 - parameterFootprint(t, method)) == 0);
pushLong(c->select8(c->memory(c->base(), localOffset(t, index, method))));
}
void loadObject(unsigned index) {
assert(t, index < codeMaxLocals(t, methodCode(t, method)));
assert(t, index < parameterFootprint(t, method)
or getBit(map, index - parameterFootprint(t, method)) != 0);
pushObject(c->memory(c->base(), localOffset(t, index, method)));
}
void storeInt(unsigned index) {
popInt(c->memory(c->base(), localOffset(t, index, method)));
storedInt(index);
}
void storeLong(unsigned index) {
popLong(c->select8(c->memory(c->base(), localOffset(t, index, method))));
storedInt(index);
storedInt(index + 1);
}
void storeObject(unsigned index) {
popObject(c->memory(c->base(), localOffset(t, index, method)));
storedObject(index);
}
void increment(unsigned index, int count) {
assert(t, index < codeMaxLocals(t, methodCode(t, method)));
assert(t, index < parameterFootprint(t, method)
or getBit(map, index - parameterFootprint(t, method)) == 0);
c->add(c->constant(count),
c->memory(c->base(), localOffset(t, index, method)));
}
void dup() {
stack = c->push(stack, c->stack(stack, 0));
dupped();
}
void dupX1() {
Operand* s0 = c->stack(stack, 0);
Operand* s1 = c->stack(stack, 1);
c->mov(s0, s1);
c->mov(s1, s0);
stack = c->push(stack, s0);
duppedX1();
}
void dupX2() {
Operand* s0 = c->stack(stack, 0);
Operand* s1 = c->stack(stack, 1);
Operand* s2 = c->stack(stack, 2);
c->mov(s0, s2);
c->mov(s2, s1);
c->mov(s1, s0);
stack = c->push(stack, s0);
duppedX2();
}
void dup2() {
Operand* s0 = c->stack(stack, 0);
stack = c->push(stack, s0);
stack = c->push(stack, s0);
dupped2();
}
void dup2X1() {
Operand* s0 = c->stack(stack, 0);
Operand* s1 = c->stack(stack, 1);
Operand* s2 = c->stack(stack, 2);
c->mov(s1, s2);
c->mov(s0, s1);
c->mov(s2, s0);
stack = c->push(stack, s1);
stack = c->push(stack, s0);
dupped2X1();
}
void dup2X2() {
Operand* s0 = c->stack(stack, 0);
Operand* s1 = c->stack(stack, 1);
Operand* s2 = c->stack(stack, 2);
Operand* s3 = c->stack(stack, 3);
c->mov(s1, s3);
c->mov(s0, s2);
c->mov(s3, s1);
c->mov(s2, s0);
stack = c->push(stack, s1);
stack = c->push(stack, s0);
dupped2X2();
}
void swap() {
Operand* s0 = c->stack(stack, 0);
Operand* s1 = c->stack(stack, 1);
Operand* tmp = c->temporary();
c->mov(s0, tmp);
c->mov(s1, s0);
c->mov(tmp, s1);
c->release(tmp);
swapped();
}
Frame* next;
MyThread* t;
Compiler* c;
Stack* stack;
object method;
uintptr_t* map;
Vector* objectPool;
Vector* traceLog;
uintptr_t* codeMask;
unsigned ip;
unsigned sp;
MyProtector protector;
};
void NO_RETURN
unwind(MyThread* t)
{
void* base = t->base;
void** stack = static_cast<void**>(t->stack);
while (true) {
void* returnAddress = *stack;
object node = findTraceNode(t, returnAddress);
if (node) {
object method = traceNodeMethod(t, node);
uint8_t* compiled = reinterpret_cast<uint8_t*>
(&singletonValue(t, methodCompiled(t, method), 0));
ExceptionHandler* handler = findExceptionHandler
(t, method, difference(returnAddress, compiled));
if (handler) {
unsigned parameterFootprint = methodParameterFootprint(t, method);
unsigned localFootprint = codeMaxLocals(t, methodCode(t, method));
stack = static_cast<void**>(base)
- (localFootprint - parameterFootprint);
*(--stack) = t->exception;
t->exception = 0;
vmJump(compiled + exceptionHandlerIp(handler), base, stack, t);
} else {
stack = static_cast<void**>(base) + 1;
base = *static_cast<void**>(base);
}
} else {
vmJump(returnAddress, base, stack + 1, 0);
}
}
}
void*
findInterfaceMethodFromInstance(Thread* t, object method, object instance)
{
return &singletonValue
(t, methodCompiled
(t, findInterfaceMethod(t, method, objectClass(t, instance))), 0);
}
intptr_t
compareDoublesG(uint64_t bi, uint64_t ai)
{
double a = bitsToDouble(ai);
double b = bitsToDouble(bi);
if (a < b) {
return -1;
} else if (a > b) {
return 1;
} else if (a == b) {
return 0;
} else {
return 1;
}
}
intptr_t
compareDoublesL(uint64_t bi, uint64_t ai)
{
double a = bitsToDouble(ai);
double b = bitsToDouble(bi);
if (a < b) {
return -1;
} else if (a > b) {
return 1;
} else if (a == b) {
return 0;
} else {
return -1;
}
}
intptr_t
compareFloatsG(uint32_t bi, uint32_t ai)
{
float a = bitsToFloat(ai);
float b = bitsToFloat(bi);
if (a < b) {
return -1;
} else if (a > b) {
return 1;
} else if (a == b) {
return 0;
} else {
return 1;
}
}
intptr_t
compareFloatsL(uint32_t bi, uint32_t ai)
{
float a = bitsToFloat(ai);
float b = bitsToFloat(bi);
if (a < b) {
return -1;
} else if (a > b) {
return 1;
} else if (a == b) {
return 0;
} else {
return -1;
}
}
uint64_t
addDouble(uint64_t b, uint64_t a)
{
return doubleToBits(bitsToDouble(a) + bitsToDouble(b));
}
uint64_t
subtractDouble(uint64_t b, uint64_t a)
{
return doubleToBits(bitsToDouble(a) - bitsToDouble(b));
}
uint64_t
multiplyDouble(uint64_t b, uint64_t a)
{
return doubleToBits(bitsToDouble(a) * bitsToDouble(b));
}
uint64_t
divideDouble(uint64_t b, uint64_t a)
{
return doubleToBits(bitsToDouble(a) / bitsToDouble(b));
}
uint64_t
moduloDouble(uint64_t b, uint64_t a)
{
return doubleToBits(fmod(bitsToDouble(a), bitsToDouble(b)));
}
uint64_t
negateDouble(uint64_t a)
{
return doubleToBits(- bitsToDouble(a));
}
uint32_t
doubleToFloat(int64_t a)
{
return floatToBits(static_cast<float>(bitsToDouble(a)));
}
int32_t
doubleToInt(int64_t a)
{
return static_cast<int32_t>(bitsToDouble(a));
}
int64_t
doubleToLong(int64_t a)
{
return static_cast<int64_t>(bitsToDouble(a));
}
uint32_t
addFloat(uint32_t b, uint32_t a)
{
return floatToBits(bitsToFloat(a) + bitsToFloat(b));
}
uint32_t
subtractFloat(uint32_t b, uint32_t a)
{
return floatToBits(bitsToFloat(a) - bitsToFloat(b));
}
uint32_t
multiplyFloat(uint32_t b, uint32_t a)
{
return floatToBits(bitsToFloat(a) * bitsToFloat(b));
}
uint32_t
divideFloat(uint32_t b, uint32_t a)
{
return floatToBits(bitsToFloat(a) / bitsToFloat(b));
}
uint32_t
moduloFloat(uint32_t b, uint32_t a)
{
return floatToBits(fmod(bitsToFloat(a), bitsToFloat(b)));
}
uint32_t
negateFloat(uint32_t a)
{
return floatToBits(- bitsToFloat(a));
}
int64_t
divideLong(int64_t b, int64_t a)
{
return a / b;
}
int64_t
moduloLong(int64_t b, int64_t a)
{
return a % b;
}
uint64_t
floatToDouble(int32_t a)
{
return doubleToBits(static_cast<double>(bitsToFloat(a)));
}
int32_t
floatToInt(int32_t a)
{
return static_cast<int32_t>(bitsToFloat(a));
}
int64_t
floatToLong(int32_t a)
{
return static_cast<int64_t>(bitsToFloat(a));
}
uint64_t
intToDouble(int32_t a)
{
return doubleToBits(static_cast<double>(a));
}
uint32_t
intToFloat(int32_t a)
{
return floatToBits(static_cast<float>(a));
}
object
makeBlankObjectArray(Thread* t, object class_, int32_t length)
{
return makeObjectArray(t, class_, length, true);
}
object
makeBlankArray(Thread* t, object (*constructor)(Thread*, uintptr_t, bool),
int32_t length)
{
return constructor(t, length, true);
}
uintptr_t
lookUpAddress(int32_t key, uintptr_t* start, int32_t count,
uintptr_t* default_)
{
int32_t bottom = 0;
int32_t top = count;
for (int32_t span = top - bottom; span; span = top - bottom) {
int32_t middle = bottom + (span / 2);
uintptr_t* p = start + (middle * 2);
int32_t k = *p;
if (key < k) {
top = middle;
} else if (key > k) {
bottom = middle + 1;
} else {
return p[1];
}
}
return *default_;
}
void
acquireMonitorForObject(Thread* t, object o)
{
acquire(t, o);
}
void
releaseMonitorForObject(Thread* t, object o)
{
release(t, o);
}
object
makeMultidimensionalArray2(MyThread* t, object class_, uintptr_t* stack,
int32_t dimensions)
{
PROTECT(t, class_);
int32_t counts[dimensions];
for (int i = dimensions - 1; i >= 0; --i) {
counts[i] = stack[dimensions - i - 1];
if (UNLIKELY(counts[i] < 0)) {
object message = makeString(t, "%d", counts[i]);
t->exception = makeNegativeArraySizeException(t, message);
return 0;
}
}
object array = makeArray(t, counts[0], true);
setObjectClass(t, array, class_);
PROTECT(t, array);
populateMultiArray(t, array, counts, 0, dimensions);
return array;
}
object
makeMultidimensionalArray(MyThread* t, object class_, uintptr_t* stack,
int32_t dimensions)
{
object r = makeMultidimensionalArray2(t, class_, stack, dimensions);
if (UNLIKELY(t->exception)) {
unwind(t);
} else {
return r;
}
}
void NO_RETURN
throwNew(MyThread* t, object class_)
{
t->exception = makeNew(t, class_);
object trace = makeTrace(t);
set(t, t->exception, ThrowableTrace, trace);
unwind(t);
}
void NO_RETURN
throw_(MyThread* t, object o)
{
if (o) {
t->exception = o;
} else {
t->exception = makeNullPointerException(t);
}
unwind(t);
}
void
compileThrowNew(MyThread* t, Frame* frame, Machine::Type type)
{
Operand* class_ = frame->append(arrayBody(t, t->m->types, type));
Compiler* c = frame->c;
c->indirectCallNoReturn
(c->constant(reinterpret_cast<intptr_t>(throwNew)),
2, c->thread(), class_);
frame->trace();
}
void
pushReturnValue(MyThread* t, Frame* frame, unsigned code, Operand* result)
{
switch (code) {
case ByteField:
case BooleanField:
case CharField:
case ShortField:
case FloatField:
case IntField:
frame->pushInt(result);
break;
case ObjectField:
frame->pushObject(result);
break;
case LongField:
case DoubleField:
frame->pushLong(result);
break;
case VoidField:
break;
default:
abort(t);
}
}
void
compileDirectInvoke(MyThread* t, Frame* frame, object target)
{
Operand* result = frame->c->alignedCall
(frame->c->constant
(reinterpret_cast<intptr_t>
(&singletonBody(t, methodCompiled(t, target), 0))));
frame->trace(target, false);
frame->pop(methodParameterFootprint(t, target));
pushReturnValue(t, frame, methodReturnCode(t, target), result);
}
void
compile(MyThread* t, Frame* initialFrame, unsigned ip)
{
uintptr_t map[Frame::mapSizeInWords(t, initialFrame->method)];
Frame myFrame(initialFrame, map);
Frame* frame = &myFrame;
Compiler* c = frame->c;
object code = methodCode(t, frame->method);
PROTECT(t, code);
while (ip < codeLength(t, code)) {
if (getBit(frame->codeMask, ip)) {
// we've already visited this part of the code
return;
}
markBit(frame->codeMask, ip);
frame->startLogicalIp(ip);
unsigned instruction = codeBody(t, code, ip++);
switch (instruction) {
case aaload:
case baload:
case caload:
case daload:
case faload:
case iaload:
case laload:
case saload: {
Operand* next = c->label();
Operand* outOfBounds = c->label();
Operand* index = frame->popInt();
Operand* array = frame->popObject();
c->cmp(c->constant(0), index);
c->jl(outOfBounds);
c->cmp(c->memory(array, ArrayLength), index);
c->jge(outOfBounds);
switch (instruction) {
case aaload:
frame->pushObject(c->memory(array, ArrayBody, index, BytesPerWord));
break;
case faload:
case iaload:
frame->pushInt(c->select4(c->memory(array, ArrayBody, index, 4)));
break;
case baload:
frame->pushInt(c->select1(c->memory(array, ArrayBody, index, 1)));
break;
case caload:
frame->pushInt(c->select2z(c->memory(array, ArrayBody, index, 2)));
break;
case daload:
case laload:
frame->pushLong(c->select8(c->memory(array, ArrayBody, index, 8)));
break;
case saload:
frame->pushInt(c->select2(c->memory(array, ArrayBody, index, 2)));
break;
}
c->release(index);
c->release(array);
c->jmp(next);
c->mark(outOfBounds);
compileThrowNew(t, frame, Machine::ArrayIndexOutOfBoundsExceptionType);
c->mark(next);
} break;
case aastore:
case bastore:
case castore:
case dastore:
case fastore:
case iastore:
case lastore:
case sastore: {
Operand* next = c->label();
Operand* outOfBounds = c->label();
Operand* value;
if (instruction == dastore or instruction == lastore) {
value = frame->popLong();
} else if (instruction == aastore) {
value = frame->popObject();
} else {
value = frame->popInt();
}
Operand* index = frame->popInt();
Operand* array = frame->popObject();
c->cmp(c->constant(0), index);
c->jl(outOfBounds);
c->cmp(c->memory(array, BytesPerWord), index);
c->jge(outOfBounds);
switch (instruction) {
case aastore:
c->shl(c->constant(log(BytesPerWord)), index);
c->add(c->constant(ArrayBody), index);
c->directCall
(c->constant(reinterpret_cast<intptr_t>(set)),
4, c->thread(), array, index, value);
frame->trace();
break;
case fastore:
case iastore:
c->mov(value, c->select4(c->memory(array, ArrayBody, index, 4)));
break;
case bastore:
c->mov(value, c->select1(c->memory(array, ArrayBody, index, 1)));
break;
case castore:
case sastore:
c->mov(value, c->select2(c->memory(array, ArrayBody, index, 2)));
break;
case dastore:
case lastore:
c->mov(value, c->select8(c->memory(array, ArrayBody, index, 8)));
break;
}
c->release(value);
c->release(index);
c->release(array);
c->jmp(next);
c->mark(outOfBounds);
compileThrowNew(t, frame, Machine::ArrayIndexOutOfBoundsExceptionType);
c->mark(next);
} break;
case aconst_null:
frame->pushObject(c->constant(0));
break;
case aload:
frame->loadObject(codeBody(t, code, ip++));
break;
case aload_0:
frame->loadObject(0);
break;
case aload_1:
frame->loadObject(1);
break;
case aload_2:
frame->loadObject(2);
break;
case aload_3:
frame->loadObject(3);
break;
case anewarray: {
uint16_t index = codeReadInt16(t, code, ip);
object class_ = resolveClassInPool(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
Operand* nonnegative = c->label();
Operand* length = frame->popInt();
c->cmp(c->constant(0), length);
c->jge(nonnegative);
compileThrowNew(t, frame, Machine::NegativeArraySizeExceptionType);
c->mark(nonnegative);
Operand* r = c->indirectCall
(c->constant(reinterpret_cast<intptr_t>(makeBlankObjectArray)),
3, c->thread(), frame->append(class_), length);
c->release(length);
frame->trace();
frame->pushObject(r);
} break;
case areturn: {
Operand* result = frame->popObject();
c->return_(result);
c->release(result);
} return;
case arraylength: {
Operand* array = frame->popObject();
frame->pushInt(c->memory(array, ArrayLength));
c->release(array);
} break;
case astore:
frame->storeObject(codeBody(t, code, ip++));
break;
case astore_0:
frame->storeObject(0);
break;
case astore_1:
frame->storeObject(1);
break;
case astore_2:
frame->storeObject(2);
break;
case astore_3:
frame->storeObject(3);
break;
case athrow: {
Operand* e = frame->popObject();
c->indirectCallNoReturn
(c->constant(reinterpret_cast<intptr_t>(throw_)),
2, c->thread(), e);
c->release(e);
frame->trace();
} return;
case bipush:
frame->pushInt
(c->constant(static_cast<int8_t>(codeBody(t, code, ip++))));
break;
case checkcast: {
uint16_t index = codeReadInt16(t, code, ip);
object class_ = resolveClassInPool(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
Operand* next = c->label();
Operand* instance = frame->topObject();
Operand* tmp = c->temporary();
c->mov(instance, tmp);
c->cmp(c->constant(0), tmp);
c->je(next);
Operand* classOperand = frame->append(class_);
c->mov(c->memory(tmp), tmp);
c->and_(c->constant(PointerMask), tmp);
c->cmp(classOperand, tmp);
c->je(next);
Operand* result = c->directCall
(c->constant(reinterpret_cast<intptr_t>(isAssignableFrom)),
3, c->thread(), classOperand, tmp);
c->release(tmp);
c->cmp(c->constant(0), result);
c->jne(next);
compileThrowNew(t, frame, Machine::ClassCastExceptionType);
c->mark(next);
} break;
case d2f: {
Operand* a = frame->popLong();
frame->pushInt
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(doubleToFloat)), 1, a));
c->release(a);
} break;
case d2i: {
Operand* a = frame->popLong();
frame->pushInt
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(doubleToInt)), 1, a));
c->release(a);
} break;
case d2l: {
Operand* a = frame->popLong();
frame->pushLong
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(doubleToLong)), 1, a));
c->release(a);
} break;
case dadd: {
Operand* a = frame->popLong();
Operand* b = frame->popLong();
frame->pushLong
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(addDouble)), 2, a, b));
c->release(a);
c->release(b);
} break;
case dcmpg: {
Operand* a = frame->popLong();
Operand* b = frame->popLong();
frame->pushInt
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(compareDoublesG)), 2, a, b));
c->release(a);
c->release(b);
} break;
case dcmpl: {
Operand* a = frame->popLong();
Operand* b = frame->popLong();
frame->pushInt
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(compareDoublesL)), 2, a, b));
c->release(a);
c->release(b);
} break;
case dconst_0:
frame->pushLong(c->constant(doubleToBits(0.0)));
break;
case dconst_1:
frame->pushLong(c->constant(doubleToBits(1.0)));
break;
case ddiv: {
Operand* a = frame->popLong();
Operand* b = frame->popLong();
frame->pushLong
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(divideDouble)), 2, a, b));
c->release(a);
c->release(b);
} break;
case dmul: {
Operand* a = frame->popLong();
Operand* b = frame->popLong();
frame->pushLong
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(multiplyDouble)), 2, a, b));
c->release(a);
c->release(b);
} break;
case dneg: {
Operand* a = frame->popLong();
frame->pushLong
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(negateDouble)), 1, a));
c->release(a);
} break;
case vm::drem: {
Operand* a = frame->popLong();
Operand* b = frame->popLong();
frame->pushLong
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(moduloDouble)), 2, a, b));
c->release(a);
c->release(b);
} break;
case dsub: {
Operand* a = frame->popLong();
Operand* b = frame->popLong();
frame->pushLong
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(subtractDouble)), 2, a, b));
c->release(a);
c->release(b);
} break;
case dup:
frame->dup();
break;
case dup_x1:
frame->dupX1();
break;
case dup_x2:
frame->dupX2();
break;
case dup2:
frame->dup2();
break;
case dup2_x1:
frame->dup2X1();
break;
case dup2_x2:
frame->dup2X2();
break;
case f2d: {
Operand* a = frame->popInt();
frame->pushLong
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(floatToDouble)), 1, a));
c->release(a);
} break;
case f2i: {
Operand* a = frame->popInt();
frame->pushInt
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(floatToInt)), 1, a));
c->release(a);
} break;
case f2l: {
Operand* a = frame->popInt();
frame->pushLong
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(floatToLong)), 1, a));
c->release(a);
} break;
case fadd: {
Operand* a = frame->popInt();
Operand* b = frame->popInt();
frame->pushInt
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(addFloat)), 2, a, b));
c->release(a);
c->release(b);
} break;
case fcmpg: {
Operand* a = frame->popInt();
Operand* b = frame->popInt();
frame->pushInt
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(compareFloatsG)), 2, a, b));
c->release(a);
c->release(b);
} break;
case fcmpl: {
Operand* a = frame->popInt();
Operand* b = frame->popInt();
frame->pushInt
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(compareFloatsL)), 2, a, b));
c->release(a);
c->release(b);
} break;
case fconst_0:
frame->pushInt(c->constant(floatToBits(0.0)));
break;
case fconst_1:
frame->pushInt(c->constant(floatToBits(1.0)));
break;
case fconst_2:
frame->pushInt(c->constant(floatToBits(2.0)));
break;
case fdiv: {
Operand* a = frame->popInt();
Operand* b = frame->popInt();
frame->pushInt
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(divideFloat)), 2, a, b));
c->release(a);
c->release(b);
} break;
case fmul: {
Operand* a = frame->popInt();
Operand* b = frame->popInt();
frame->pushInt
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(multiplyFloat)), 2, a, b));
c->release(a);
c->release(b);
} break;
case fneg: {
Operand* a = frame->popLong();
frame->pushLong
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(negateFloat)), 1, a));
c->release(a);
} break;
case vm::frem: {
Operand* a = frame->popInt();
Operand* b = frame->popInt();
frame->pushInt
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(moduloFloat)), 2, a, b));
c->release(a);
c->release(b);
} break;
case fsub: {
Operand* a = frame->popInt();
Operand* b = frame->popInt();
frame->pushInt
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(subtractFloat)), 2, a, b));
c->release(a);
c->release(b);
} break;
case getfield:
case getstatic: {
uint16_t index = codeReadInt16(t, code, ip);
object field = resolveField(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
Operand* table;
if (instruction == getstatic) {
initClass(t, fieldClass(t, field));
if (UNLIKELY(t->exception)) return;
table = frame->append(classStaticTable(t, fieldClass(t, field)));
} else {
table = frame->popObject();
}
switch (fieldCode(t, field)) {
case ByteField:
case BooleanField:
frame->pushInt(c->select1(c->memory(table, fieldOffset(t, field))));
break;
case CharField:
frame->pushInt(c->select2z(c->memory(table, fieldOffset(t, field))));
break;
case ShortField:
frame->pushInt(c->select2(c->memory(table, fieldOffset(t, field))));
break;
case FloatField:
case IntField:
frame->pushInt(c->select4(c->memory(table, fieldOffset(t, field))));
break;
case DoubleField:
case LongField:
frame->pushLong(c->select8(c->memory(table, fieldOffset(t, field))));
break;
case ObjectField:
frame->pushObject(c->memory(table, fieldOffset(t, field)));
break;
default:
abort(t);
}
if (instruction != getstatic) {
c->release(table);
}
} break;
case goto_: {
uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip);
assert(t, newIp < codeLength(t, code));
c->jmp(frame->machineIp(newIp));
ip = newIp;
} break;
case goto_w: {
uint32_t newIp = (ip - 5) + codeReadInt32(t, code, ip);
assert(t, newIp < codeLength(t, code));
c->jmp(frame->machineIp(newIp));
ip = newIp;
} break;
case i2b: {
Operand* top = frame->topInt();
c->mov(c->select1(top), top);
} break;
case i2c: {
Operand* top = frame->topInt();
c->mov(c->select2z(top), top);
} break;
case i2d: {
Operand* a = frame->popInt();
frame->pushLong
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(intToDouble)), 1, a));
c->release(a);
} break;
case i2f: {
Operand* a = frame->popInt();
frame->pushInt
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(intToFloat)), 1, a));
c->release(a);
} break;
case i2l: {
Operand* a = frame->popInt();
frame->pushLong(a);
c->release(a);
} break;
case i2s: {
Operand* top = frame->topInt();
c->mov(c->select2(top), top);
} break;
case iadd: {
Operand* a = frame->popInt();
c->add(a, frame->topInt());
c->release(a);
} break;
case iand: {
Operand* a = frame->popInt();
c->and_(a, frame->topInt());
c->release(a);
} break;
case iconst_m1:
frame->pushInt(c->constant(-1));
break;
case iconst_0:
frame->pushInt(c->constant(0));
break;
case iconst_1:
frame->pushInt(c->constant(1));
break;
case iconst_2:
frame->pushInt(c->constant(2));
break;
case iconst_3:
frame->pushInt(c->constant(3));
break;
case iconst_4:
frame->pushInt(c->constant(4));
break;
case iconst_5:
frame->pushInt(c->constant(5));
break;
case idiv: {
Operand* a = frame->popInt();
c->div(a, frame->topInt());
c->release(a);
} break;
case if_acmpeq:
case if_acmpne: {
uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip);
assert(t, newIp < codeLength(t, code));
Operand* a = frame->popObject();
Operand* b = frame->popObject();
c->cmp(a, b);
c->release(a);
c->release(b);
Operand* target = frame->machineIp(newIp);
if (instruction == if_acmpeq) {
c->je(target);
} else {
c->jne(target);
}
compile(t, frame, newIp);
if (UNLIKELY(t->exception)) return;
} break;
case if_icmpeq:
case if_icmpne:
case if_icmpgt:
case if_icmpge:
case if_icmplt:
case if_icmple: {
uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip);
assert(t, newIp < codeLength(t, code));
Operand* a = frame->popInt();
Operand* b = frame->popInt();
c->cmp(a, b);
c->release(a);
c->release(b);
Operand* target = frame->machineIp(newIp);
switch (instruction) {
case if_icmpeq:
c->je(target);
break;
case if_icmpne:
c->jne(target);
break;
case if_icmpgt:
c->jg(target);
break;
case if_icmpge:
c->jge(target);
break;
case if_icmplt:
c->jl(target);
break;
case if_icmple:
c->jle(target);
break;
}
compile(t, frame, newIp);
if (UNLIKELY(t->exception)) return;
} break;
case ifeq:
case ifne:
case ifgt:
case ifge:
case iflt:
case ifle: {
uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip);
assert(t, newIp < codeLength(t, code));
Operand* a = frame->popInt();
c->cmp(c->constant(0), a);
c->release(a);
Operand* target = frame->machineIp(newIp);
switch (instruction) {
case ifeq:
c->je(target);
break;
case ifne:
c->jne(target);
break;
case ifgt:
c->jg(target);
break;
case ifge:
c->jge(target);
break;
case iflt:
c->jl(target);
break;
case ifle:
c->jle(target);
break;
}
compile(t, frame, newIp);
if (UNLIKELY(t->exception)) return;
} break;
case ifnull:
case ifnonnull: {
uint32_t newIp = (ip - 3) + codeReadInt16(t, code, ip);
assert(t, newIp < codeLength(t, code));
Operand* a = frame->popObject();
c->cmp(c->constant(0), a);
c->release(a);
Operand* target = frame->machineIp(newIp);
if (instruction == ifnull) {
c->je(target);
} else {
c->jne(target);
}
compile(t, frame, newIp);
if (UNLIKELY(t->exception)) return;
} break;
case iinc: {
uint8_t index = codeBody(t, code, ip++);
int8_t count = codeBody(t, code, ip++);
frame->increment(index, count);
} break;
case iload:
case fload:
frame->loadInt(codeBody(t, code, ip++));
break;
case iload_0:
case fload_0:
frame->loadInt(0);
break;
case iload_1:
case fload_1:
frame->loadInt(1);
break;
case iload_2:
case fload_2:
frame->loadInt(2);
break;
case iload_3:
case fload_3:
frame->loadInt(3);
break;
case imul: {
Operand* a = frame->popInt();
c->mul(a, frame->topInt());
c->release(a);
} break;
case instanceof: {
uint16_t index = codeReadInt16(t, code, ip);
object class_ = resolveClassInPool(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
Operand* call = c->label();
Operand* next = c->label();
Operand* zero = c->label();
Operand* instance = frame->popObject();
Operand* tmp = c->temporary();
Operand* result = c->temporary();
c->mov(instance, tmp);
c->cmp(c->constant(0), tmp);
c->je(zero);
Operand* classOperand = frame->append(class_);
c->mov(c->memory(tmp), tmp);
c->and_(c->constant(PointerMask), tmp);
c->cmp(classOperand, tmp);
c->jne(call);
c->mov(c->constant(1), result);
c->jmp(next);
c->mark(call);
c->mov
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(isAssignableFrom)),
3, c->thread(), classOperand, tmp), result);
c->release(tmp);
c->release(instance);
c->jmp(next);
c->mark(zero);
c->mov(c->constant(0), result);
c->mark(next);
frame->pushInt(result);
c->release(result);
} break;
case invokeinterface: {
uint16_t index = codeReadInt16(t, code, ip);
ip += 2;
object target = resolveMethod(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
unsigned parameterFootprint = methodParameterFootprint(t, target);
unsigned instance = parameterFootprint - 1;
Operand* result = c->call
(c->directCall
(c->constant
(reinterpret_cast<intptr_t>(findInterfaceMethodFromInstance)),
3, c->thread(), frame->append(target),
c->stack(frame->stack, instance)));
frame->trace(target, true);
frame->pop(parameterFootprint);
pushReturnValue(t, frame, methodReturnCode(t, target), result);
} break;
case invokespecial: {
uint16_t index = codeReadInt16(t, code, ip);
object target = resolveMethod(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
object class_ = methodClass(t, target);
if (isSpecialMethod(t, target, class_)) {
target = findMethod(t, target, classSuper(t, class_));
}
compileDirectInvoke(t, frame, target);
} break;
case invokestatic: {
uint16_t index = codeReadInt16(t, code, ip);
object target = resolveMethod(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
PROTECT(t, target);
initClass(t, methodClass(t, target));
if (UNLIKELY(t->exception)) return;
compileDirectInvoke(t, frame, target);
} break;
case invokevirtual: {
uint16_t index = codeReadInt16(t, code, ip);
object target = resolveMethod(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
unsigned parameterFootprint = methodParameterFootprint(t, target);
unsigned offset = ClassVtable + (methodOffset(t, target) * BytesPerWord);
Operand* instance = c->stack(frame->stack, parameterFootprint - 1);
Operand* class_ = c->temporary();
c->mov(c->memory(instance), class_);
c->and_(c->constant(PointerMask), class_);
Operand* result = c->call(c->memory(class_, offset));
frame->trace(target, true);
c->release(class_);
frame->pop(parameterFootprint);
pushReturnValue(t, frame, methodReturnCode(t, target), result);
} break;
case ior: {
Operand* a = frame->popInt();
c->or_(a, frame->topInt());
c->release(a);
} break;
case irem: {
Operand* a = frame->popInt();
c->rem(a, frame->topInt());
c->release(a);
} break;
case ireturn:
case freturn: {
Operand* a = frame->popInt();
c->return_(a);
c->release(a);
} return;
case ishl: {
Operand* a = frame->popInt();
c->shl(a, frame->topInt());
c->release(a);
} break;
case ishr: {
Operand* a = frame->popInt();
c->shr(a, frame->topInt());
c->release(a);
} break;
case istore:
case fstore:
frame->storeInt(codeBody(t, code, ip++));
break;
case istore_0:
case fstore_0:
frame->storeInt(0);
break;
case istore_1:
case fstore_1:
frame->storeInt(1);
break;
case istore_2:
case fstore_2:
frame->storeInt(2);
break;
case istore_3:
case fstore_3:
frame->storeInt(3);
break;
case isub: {
Operand* a = frame->popInt();
c->sub(a, frame->topInt());
c->release(a);
} break;
case iushr: {
Operand* a = frame->popInt();
c->ushr(a, frame->topInt());
c->release(a);
} break;
case ixor: {
Operand* a = frame->popInt();
c->xor_(a, frame->topInt());
c->release(a);
} break;
case jsr:
case jsr_w:
case ret:
// see http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4381996
abort(t);
case l2i: {
Operand* a = frame->popLong();
frame->pushInt(a);
c->release(a);
} break;
case ladd: {
Operand* a = frame->popLong();
c->add(a, frame->topLong());
c->release(a);
} break;
case lcmp: {
Operand* next = c->label();
Operand* less = c->label();
Operand* greater = c->label();
Operand* a = frame->popLong();
Operand* b = frame->popLong();
Operand* result = c->temporary();
c->cmp(a, b);
c->release(a);
c->release(b);
c->jl(less);
c->jg(greater);
c->mov(c->constant(0), result);
c->jmp(next);
c->mark(less);
c->mov(c->constant(-1), result);
c->jmp(next);
c->mark(greater);
c->mov(c->constant(1), result);
c->mark(next);
frame->pushInt(result);
c->release(result);
} break;
case lconst_0:
frame->pushLong(c->constant(0));
break;
case lconst_1:
frame->pushLong(c->constant(1));
break;
case ldc:
case ldc_w: {
uint16_t index;
if (instruction == ldc) {
index = codeBody(t, code, ip++);
} else {
index = codeReadInt16(t, code, ip);
}
object pool = codePool(t, code);
if (singletonIsObject(t, pool, index - 1)) {
object v = singletonObject(t, pool, index - 1);
if (objectClass(t, v)
== arrayBody(t, t->m->types, Machine::ByteArrayType))
{
object class_ = resolveClassInPool(t, pool, index - 1);
if (UNLIKELY(t->exception)) return;
frame->pushObject(frame->append(class_));
} else {
frame->pushObject(frame->append(v));
}
} else {
frame->pushInt(c->constant(singletonValue(t, pool, index - 1)));
}
} break;
case ldc2_w: {
uint16_t index = codeReadInt16(t, code, ip);
object pool = codePool(t, code);
uint64_t v;
memcpy(&v, &singletonValue(t, pool, index - 1), 8);
frame->pushLong(c->constant(v));
} break;
case ldiv_: {
Operand* a = frame->popLong();
c->div(a, frame->topLong());
c->release(a);
} break;
case lload:
case dload:
frame->loadLong(codeBody(t, code, ip++));
break;
case lload_0:
case dload_0:
frame->loadLong(0);
break;
case lload_1:
case dload_1:
frame->loadLong(1);
break;
case lload_2:
case dload_2:
frame->loadLong(2);
break;
case lload_3:
case dload_3:
frame->loadLong(3);
break;
case lmul: {
Operand* a = frame->popLong();
c->mul(a, frame->topLong());
c->release(a);
} break;
case lneg:
c->neg(frame->topLong());
break;
case lookupswitch: {
int32_t base = ip - 1;
ip = (ip + 3) & ~3; // pad to four byte boundary
Operand* key = frame->popInt();
uint32_t defaultIp = base + codeReadInt32(t, code, ip);
assert(t, defaultIp < codeLength(t, code));
Operand* default_ = c->absolute
(c->poolAppendPromise(c->machineIp(defaultIp)));
int32_t pairCount = codeReadInt32(t, code, ip);
Operand* start = 0;
uint32_t ipTable[pairCount];
for (int32_t i = 0; i < pairCount; ++i) {
unsigned index = ip + (i * 8);
int32_t key = codeReadInt32(t, code, index);
uint32_t newIp = base + codeReadInt32(t, code, index);
assert(t, newIp < codeLength(t, code));
ipTable[i] = newIp;
Promise* p = c->poolAppend(key);
if (i == 0) {
start = c->promiseConstant(p);
}
c->poolAppendPromise(c->machineIp(newIp));
}
assert(t, start);
c->jmp
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(lookUpAddress)),
4, key, start, c->constant(pairCount), default_));
c->release(key);
for (int32_t i = 0; i < pairCount; ++i) {
compile(t, frame, ipTable[i]);
if (UNLIKELY(t->exception)) return;
}
compile(t, frame, defaultIp);
if (UNLIKELY(t->exception)) return;
} return;
case lor: {
Operand* a = frame->popLong();
c->or_(a, frame->topLong());
c->release(a);
} break;
case lrem: {
Operand* a = frame->popLong();
c->rem(a, frame->topLong());
c->release(a);
} break;
case lreturn:
case dreturn: {
Operand* a = frame->popLong();
c->return_(a);
c->release(a);
} return;
case lshl: {
Operand* a = frame->popLong();
c->shl(a, frame->topLong());
c->release(a);
} break;
case lshr: {
Operand* a = frame->popLong();
c->shr(a, frame->topLong());
c->release(a);
} break;
case lstore:
case dstore:
frame->storeLong(codeBody(t, code, ip++));
break;
case lstore_0:
case dstore_0:
frame->storeLong(0);
break;
case lstore_1:
case dstore_1:
frame->storeLong(1);
break;
case lstore_2:
case dstore_2:
frame->storeLong(2);
break;
case lstore_3:
case dstore_3:
frame->storeLong(3);
break;
case lsub: {
Operand* a = frame->popLong();
c->sub(a, frame->topLong());
c->release(a);
} break;
case lushr: {
Operand* a = frame->popLong();
c->ushr(a, frame->topLong());
c->release(a);
} break;
case lxor: {
Operand* a = frame->popLong();
c->xor_(a, frame->topLong());
c->release(a);
} break;
case monitorenter: {
Operand* a = frame->popObject();
c->indirectCall
(c->constant(reinterpret_cast<intptr_t>(acquireMonitorForObject)),
2, c->thread(), a);
c->release(a);
frame->trace();
} break;
case monitorexit: {
Operand* a = frame->popObject();
c->indirectCall
(c->constant(reinterpret_cast<intptr_t>(releaseMonitorForObject)),
2, c->thread(), a);
c->release(a);
frame->trace();
} break;
case multianewarray: {
uint16_t index = codeReadInt16(t, code, ip);
uint8_t dimensions = codeBody(t, code, ip++);
object class_ = resolveClassInPool(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
PROTECT(t, class_);
Operand* result = c->indirectCall
(c->constant(reinterpret_cast<intptr_t>(makeMultidimensionalArray)),
4, c->thread(), frame->append(class_), c->stack(),
c->constant(dimensions));
frame->trace();
frame->pop(dimensions);
frame->pushObject(result);
} break;
case new_: {
uint16_t index = codeReadInt16(t, code, ip);
object class_ = resolveClassInPool(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
PROTECT(t, class_);
initClass(t, class_);
if (UNLIKELY(t->exception)) return;
Operand* result;
if (classVmFlags(t, class_) & WeakReferenceFlag) {
result = c->indirectCall
(c->constant(reinterpret_cast<intptr_t>(makeNewWeakReference)),
2, c->thread(), frame->append(class_));
} else {
result = c->indirectCall
(c->constant(reinterpret_cast<intptr_t>(makeNew)),
2, c->thread(), frame->append(class_));
}
frame->trace();
frame->pushObject(result);
} break;
case newarray: {
uint8_t type = codeBody(t, code, ip++);
Operand* nonnegative = c->label();
Operand* size = frame->popInt();
c->cmp(c->constant(0), size);
c->jge(nonnegative);
compileThrowNew(t, frame, Machine::NegativeArraySizeExceptionType);
c->mark(nonnegative);
object (*constructor)(Thread*, uintptr_t, bool);
switch (type) {
case T_BOOLEAN:
constructor = makeBooleanArray;
break;
case T_CHAR:
constructor = makeCharArray;
break;
case T_FLOAT:
constructor = makeFloatArray;
break;
case T_DOUBLE:
constructor = makeDoubleArray;
break;
case T_BYTE:
constructor = makeByteArray;
break;
case T_SHORT:
constructor = makeShortArray;
break;
case T_INT:
constructor = makeIntArray;
break;
case T_LONG:
constructor = makeLongArray;
break;
default: abort(t);
}
Operand* result = c->indirectCall
(c->constant(reinterpret_cast<intptr_t>(makeBlankArray)),
3, c->thread(), c->constant(reinterpret_cast<intptr_t>(constructor)),
size);
c->release(size);
frame->trace();
frame->pushObject(result);
} break;
case nop: break;
case pop_:
frame->pop(1);
break;
case pop2:
frame->pop(2);
break;
case putfield:
case putstatic: {
uint16_t index = codeReadInt16(t, code, ip);
object field = resolveField(t, codePool(t, code), index - 1);
if (UNLIKELY(t->exception)) return;
object staticTable;
if (instruction == putstatic) {
PROTECT(t, field);
initClass(t, fieldClass(t, field));
if (UNLIKELY(t->exception)) return;
staticTable = classStaticTable(t, fieldClass(t, field));
}
Operand* value;
switch (fieldCode(t, field)) {
case ByteField:
case BooleanField:
case CharField:
case ShortField:
case FloatField:
case IntField: {
value = frame->popInt();
} break;
case DoubleField:
case LongField: {
value = frame->popLong();
} break;
case ObjectField: {
value = frame->popObject();
} break;
default: abort(t);
}
Operand* table;
if (instruction == putstatic) {
table = frame->append(staticTable);
} else {
table = frame->popObject();
}
switch (fieldCode(t, field)) {
case ByteField:
case BooleanField:
c->mov(value, c->select1(c->memory(table, fieldOffset(t, field))));
break;
case CharField:
case ShortField:
c->mov(value, c->select2(c->memory(table, fieldOffset(t, field))));
break;
case FloatField:
case IntField:
c->mov(value, c->select4(c->memory(table, fieldOffset(t, field))));
break;
case DoubleField:
case LongField:
c->mov(value, c->select8(c->memory(table, fieldOffset(t, field))));
break;
case ObjectField:
c->directCall
(c->constant(reinterpret_cast<intptr_t>(set)),
4, c->thread(), table, c->constant(fieldOffset(t, field)), value);
break;
default: abort(t);
}
if (instruction != putstatic) {
c->release(table);
}
c->release(value);
} break;
case return_:
c->epilogue();
c->ret();
return;
case sipush:
frame->pushInt
(c->constant(static_cast<int16_t>(codeReadInt16(t, code, ip))));
break;
case swap:
frame->swap();
break;
case tableswitch: {
int32_t base = ip - 1;
ip = (ip + 3) & ~3; // pad to four byte boundary
Operand* key = frame->popInt();
uint32_t defaultIp = base + codeReadInt32(t, code, ip);
assert(t, defaultIp < codeLength(t, code));
int32_t bottom = codeReadInt32(t, code, ip);
int32_t top = codeReadInt32(t, code, ip);
Operand* start = 0;
uint32_t ipTable[top - bottom + 1];
for (int32_t i = 0; i < top - bottom + 1; ++i) {
unsigned index = ip + (i * 4);
uint32_t newIp = base + codeReadInt32(t, code, index);
assert(t, newIp < codeLength(t, code));
ipTable[i] = newIp;
Promise* p = c->poolAppendPromise(c->machineIp(newIp));
if (i == 0) {
start = c->promiseConstant(p);
}
}
assert(t, start);
Operand* defaultCase = c->label();
c->cmp(c->constant(bottom), key);
c->jl(defaultCase);
c->cmp(c->constant(top), key);
c->jg(defaultCase);
c->sub(c->constant(bottom), key);
c->jmp(c->memory(start, 0, key, BytesPerWord));
c->mark(defaultCase);
c->jmp(frame->machineIp(defaultIp));
c->release(key);
for (int32_t i = 0; i < top - bottom + 1; ++i) {
compile(t, frame, ipTable[i]);
if (UNLIKELY(t->exception)) return;
}
compile(t, frame, defaultIp);
if (UNLIKELY(t->exception)) return;
} return;
case wide: {
switch (codeBody(t, code, ip++)) {
case aload: {
frame->loadObject(codeReadInt16(t, code, ip));
} break;
case astore: {
frame->storeObject(codeReadInt16(t, code, ip));
} break;
case iinc: {
uint16_t index = codeReadInt16(t, code, ip);
uint16_t count = codeReadInt16(t, code, ip);
frame->increment(index, count);
} break;
case iload: {
frame->loadInt(codeReadInt16(t, code, ip));
} break;
case istore: {
frame->storeInt(codeReadInt16(t, code, ip));
} break;
case lload: {
frame->loadLong(codeReadInt16(t, code, ip));
} break;
case lstore: {
frame->storeLong(codeReadInt16(t, code, ip));
} break;
case ret:
// see http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4381996
abort(t);
default: abort(t);
}
} break;
}
}
}
object
finish(MyThread* t, Compiler* c, object method, Vector* objectPool,
Vector* traceLog)
{
unsigned count = ceiling(c->codeSize() + c->poolSize(), BytesPerWord);
unsigned size = count + singletonMaskSize(count);
object result = allocate2
(t, SingletonBody + size * BytesPerWord, true, true);
initSingleton(t, result, size, true);
singletonMask(t, result)[0] = 1;
uint8_t* start = reinterpret_cast<uint8_t*>(&singletonValue(t, result, 0));
c->writeTo(start);
if (method) {
PROTECT(t, method);
PROTECT(t, result);
for (unsigned i = 0; i < objectPool->length(); i += sizeof(PoolElement)) {
PoolElement* e = objectPool->peek<PoolElement>(i);
intptr_t offset = e->address->value(c)
- reinterpret_cast<intptr_t>(start);
singletonMarkObject(t, result, offset / BytesPerWord);
set(t, result, SingletonBody + offset, e->value);
}
unsigned traceSize = Frame::traceSizeInBytes(t, method);
unsigned mapSize = Frame::mapSizeInBytes(t, method);
for (unsigned i = 0; i < traceLog->length(); i += traceSize) {
TraceElement* e = traceLog->peek<TraceElement>(i);
object node = makeTraceNode
(t, e->machineIp->value(c), 0, method, e->target, e->virtualCall,
mapSize / BytesPerWord, false);
if (mapSize) {
memcpy(&traceNodeMap(t, node, 0), e->map, mapSize);
}
insertTraceNode(t, node);
}
object code = methodCode(t, method);
PROTECT(t, code);
{
object oldTable = codeExceptionHandlerTable(t, code);
if (oldTable) {
PROTECT(t, oldTable);
unsigned length = exceptionHandlerTableLength(t, oldTable);
object newTable = makeExceptionHandlerTable(t, length, false);
for (unsigned i = 0; i < length; ++i) {
ExceptionHandler* oldHandler = exceptionHandlerTableBody
(t, oldTable, i);
ExceptionHandler* newHandler = exceptionHandlerTableBody
(t, newTable, i);
exceptionHandlerStart(newHandler)
= c->machineIp(exceptionHandlerStart(oldHandler))->value(c)
- reinterpret_cast<intptr_t>(start);
exceptionHandlerEnd(newHandler)
= c->machineIp(exceptionHandlerEnd(oldHandler))->value(c)
- reinterpret_cast<intptr_t>(start);
exceptionHandlerIp(newHandler)
= c->machineIp(exceptionHandlerIp(oldHandler))->value(c)
- reinterpret_cast<intptr_t>(start);
exceptionHandlerCatchType(newHandler)
= exceptionHandlerCatchType(oldHandler);
}
set(t, code, CodeExceptionHandlerTable, newTable);
}
}
{
object oldTable = codeLineNumberTable(t, code);
if (oldTable) {
PROTECT(t, oldTable);
unsigned length = lineNumberTableLength(t, oldTable);
object newTable = makeLineNumberTable(t, length, false);
for (unsigned i = 0; i < length; ++i) {
LineNumber* oldLine = lineNumberTableBody(t, oldTable, i);
LineNumber* newLine = lineNumberTableBody(t, newTable, i);
lineNumberIp(newLine)
= c->machineIp(lineNumberIp(oldLine))->value(c)
- reinterpret_cast<intptr_t>(start);
lineNumberLine(newLine) = lineNumberLine(oldLine);
}
set(t, code, CodeLineNumberTable, newTable);
}
}
if (Verbose) {
fprintf(stderr, "%s.%s from %p to %p\n",
&byteArrayBody(t, className(t, methodClass(t, method)), 0),
&byteArrayBody(t, methodName(t, method), 0),
start,
start + c->codeSize());
}
// for debugging:
if (//false and
strcmp(reinterpret_cast<const char*>
(&byteArrayBody(t, className(t, methodClass(t, method)), 0)),
"java/util/Collections$ArrayListIterator") == 0 and
strcmp(reinterpret_cast<const char*>
(&byteArrayBody(t, methodName(t, method), 0)),
"<init>") == 0)
{
asm("int3");
}
}
return result;
}
object
finish(MyThread* t, Compiler* c)
{
return finish(t, c, 0, 0, 0);
}
object
compile(MyThread* t, Compiler* c, object method)
{
PROTECT(t, method);
c->prologue();
object code = methodCode(t, method);
PROTECT(t, code);
unsigned footprint = methodParameterFootprint(t, method);
unsigned locals = codeMaxLocals(t, code);
c->reserve(locals - footprint);
Vector objectPool(t->m->system, 256);
Vector traceLog(t->m->system, 1024);
uintptr_t map[Frame::mapSizeInWords(t, method)];
Frame frame(t, c, method, map, &objectPool, &traceLog);
compile(t, &frame, 0);
if (UNLIKELY(t->exception)) return 0;
object eht = codeExceptionHandlerTable(t, methodCode(t, method));
if (eht) {
PROTECT(t, eht);
for (unsigned i = 0; i < exceptionHandlerTableLength(t, eht); ++i) {
ExceptionHandler* eh = exceptionHandlerTableBody(t, eht, i);
assert(t, getBit(frame.codeMask, exceptionHandlerStart(eh)));
uintptr_t map[Frame::mapSizeInWords(t, method)];
Frame frame2(&frame, map);
frame2.pushObject();
compile(t, &frame2, exceptionHandlerIp(eh));
if (UNLIKELY(t->exception)) return 0;
}
}
return finish(t, c, method, &objectPool, &traceLog);
}
void
compile(MyThread* t, object method);
void*
compileMethod2(MyThread* t)
{
object node = findTraceNode(t, *static_cast<void**>(t->stack));
PROTECT(t, node);
object target = resolveTarget(t, t->stack, traceNodeTarget(t, node));
PROTECT(t, target);
if (LIKELY(t->exception == 0)) {
compile(t, target);
}
if (UNLIKELY(t->exception)) {
return 0;
} else {
if (not traceNodeVirtualCall(t, node)) {
Compiler* c = makeCompiler(t->m->system, 0);
c->updateCall(reinterpret_cast<void*>(traceNodeAddress(t, node)),
&singletonValue(t, methodCompiled(t, target), 0));
c->dispose();
}
return &singletonValue(t, methodCompiled(t, target), 0);
}
}
void*
compileMethod(MyThread* t)
{
void* r = compileMethod2(t);
if (UNLIKELY(t->exception)) {
unwind(t);
} else {
return r;
}
}
uint64_t
invokeNative2(MyThread* t, object method)
{
PROTECT(t, method);
if (objectClass(t, methodCode(t, method))
== arrayBody(t, t->m->types, Machine::ByteArrayType))
{
void* function = resolveNativeMethod(t, method);
if (UNLIKELY(function == 0)) {
object message = makeString
(t, "%s", &byteArrayBody(t, methodCode(t, method), 0));
t->exception = makeUnsatisfiedLinkError(t, message);
return 0;
}
object p = makePointer(t, function);
set(t, method, MethodCode, p);
}
object class_ = methodClass(t, method);
PROTECT(t, class_);
unsigned footprint = methodParameterFootprint(t, method) + 1;
unsigned count = methodParameterCount(t, method) + 1;
if (methodFlags(t, method) & ACC_STATIC) {
++ footprint;
++ count;
}
uintptr_t args[footprint];
unsigned argOffset = 0;
uint8_t types[count];
unsigned typeOffset = 0;
args[argOffset++] = reinterpret_cast<uintptr_t>(t);
types[typeOffset++] = POINTER_TYPE;
uintptr_t* sp = static_cast<uintptr_t*>(t->stack)
+ methodParameterFootprint(t, method);
if (methodFlags(t, method) & ACC_STATIC) {
args[argOffset++] = reinterpret_cast<uintptr_t>(&class_);
} else {
args[argOffset++] = reinterpret_cast<uintptr_t>(sp--);
}
types[typeOffset++] = POINTER_TYPE;
MethodSpecIterator it
(t, reinterpret_cast<const char*>
(&byteArrayBody(t, methodSpec(t, method), 0)));
while (it.hasNext()) {
unsigned type = types[typeOffset++]
= fieldType(t, fieldCode(t, *it.next()));
switch (type) {
case INT8_TYPE:
case INT16_TYPE:
case INT32_TYPE:
case FLOAT_TYPE:
args[argOffset++] = *(sp--);
break;
case INT64_TYPE:
case DOUBLE_TYPE: {
if (BytesPerWord == 8) {
uint64_t a = *(sp--);
uint64_t b = *(sp--);
args[argOffset++] = (a << 32) | b;
} else {
memcpy(args + argOffset, sp, 8);
argOffset += 2;
sp -= 2;
}
} break;
case POINTER_TYPE: {
args[argOffset++] = reinterpret_cast<uintptr_t>(sp--);
} break;
default: abort(t);
}
}
void* function = pointerValue(t, methodCode(t, method));
unsigned returnType = fieldType(t, methodReturnCode(t, method));
uint64_t result;
if (Verbose) {
fprintf(stderr, "invoke native method %s.%s\n",
&byteArrayBody(t, className(t, methodClass(t, method)), 0),
&byteArrayBody(t, methodName(t, method), 0));
}
{ ENTER(t, Thread::IdleState);
result = t->m->system->call
(function,
args,
types,
count + 1,
footprint * BytesPerWord,
returnType);
}
if (Verbose) {
fprintf(stderr, "return from native method %s.%s\n",
&byteArrayBody(t, className(t, methodClass(t, method)), 0),
&byteArrayBody(t, methodName(t, method), 0));
}
if (LIKELY(t->exception == 0) and returnType == POINTER_TYPE) {
return result ? *reinterpret_cast<uintptr_t*>(result) : 0;
} else {
return result;
}
}
uint64_t
invokeNative(MyThread* t)
{
object node = findTraceNode(t, *static_cast<void**>(t->stack));
object target = resolveTarget(t, t->stack, traceNodeTarget(t, node));
uint64_t result;
if (LIKELY(t->exception == 0)) {
result = invokeNative2(t, target);
}
if (UNLIKELY(t->exception)) {
unwind(t);
} else {
return result;
}
}
inline object*
localObject(MyThread* t, void* base, object method, unsigned index)
{
return reinterpret_cast<object*>
(static_cast<uint8_t*>(base) + localOffset(t, index, method));
}
void
visitParameters(MyThread* t, Heap::Visitor* v, void* base, object method)
{
const char* spec = reinterpret_cast<const char*>
(&byteArrayBody(t, methodSpec(t, method), 0));
unsigned index = 0;
if ((methodFlags(t, method) & ACC_STATIC) == 0) {
v->visit(localObject(t, base, method, index++));
}
for (MethodSpecIterator it(t, spec); it.hasNext();) {
switch (*it.next()) {
case 'L':
case '[':
v->visit(localObject(t, base, method, index++));
break;
case 'J':
case 'D':
index += 2;
break;
default:
++ index;
break;
}
}
assert(t, index == methodParameterFootprint(t, method));
}
void
visitStackAndLocals(MyThread* t, Heap::Visitor* v, void* base, object node)
{
object method = traceNodeMethod(t, node);
unsigned parameterFootprint = methodParameterFootprint(t, method);
unsigned count = codeMaxStack(t, methodCode(t, method))
+ codeMaxLocals(t, methodCode(t, method))
- parameterFootprint;
if (count) {
uintptr_t* map = &traceNodeMap(t, node, 0);
for (unsigned i = 0; i < count; ++i) {
if (getBit(map, i)) {
v->visit(localObject(t, base, method, i + parameterFootprint));
}
}
}
}
void
visitStack(MyThread* t, Heap::Visitor* v)
{
void* base = t->base;
void** stack = static_cast<void**>(t->stack);
MyThread::CallTrace* trace = t->trace;
while (stack) {
object node = findTraceNode(t, *stack);
if (node) {
PROTECT(t, node);
// we only need to visit the parameters of this method if the
// caller is native. Otherwise, the caller owns them.
object next = findTraceNode(t, static_cast<void**>(base)[1]);
object method = traceNodeMethod(t, node);
if (next == 0) {
visitParameters(t, v, base, method);
}
visitStackAndLocals(t, v, base, node);
stack = static_cast<void**>(base) + 1;
base = *static_cast<void**>(base);
} else if (trace) {
base = trace->base;
stack = static_cast<void**>(trace->stack);
trace = trace->next;
} else {
break;
}
}
}
object
compileDefault(MyThread* t, Compiler* c)
{
c->mov(c->base(), c->memory(c->thread(), difference(&(t->base), t)));
c->mov(c->stack(), c->memory(c->thread(), difference(&(t->stack), t)));
c->jmp
(c->directCall
(c->constant(reinterpret_cast<intptr_t>(compileMethod)),
1, c->thread()));
return finish(t, c);
}
object
compileNative(MyThread* t, Compiler* c)
{
c->mov(c->base(), c->memory(c->thread(), difference(&(t->base), t)));
c->mov(c->stack(), c->memory(c->thread(), difference(&(t->stack), t)));
c->directCall
(c->constant(reinterpret_cast<intptr_t>(invokeNative)), 1, c->thread());
c->ret();
return finish(t, c);
}
class ArgumentList {
public:
ArgumentList(Thread* t, uintptr_t* array, bool* objectMask, object this_,
const char* spec, bool indirectObjects, va_list arguments):
t(static_cast<MyThread*>(t)),
array(array),
objectMask(objectMask),
position(0),
protector(this)
{
if (this_) {
addObject(this_);
}
for (MethodSpecIterator it(t, spec); it.hasNext();) {
switch (*it.next()) {
case 'L':
case '[':
if (indirectObjects) {
object* v = va_arg(arguments, object*);
addObject(v ? *v : 0);
} else {
addObject(va_arg(arguments, object));
}
break;
case 'J':
case 'D':
addLong(va_arg(arguments, uint64_t));
break;
default:
addInt(va_arg(arguments, uint32_t));
break;
}
}
}
ArgumentList(Thread* t, uintptr_t* array, bool* objectMask, object this_,
const char* spec, object arguments):
t(static_cast<MyThread*>(t)),
array(array),
objectMask(objectMask),
position(0),
protector(this)
{
if (this_) {
addObject(this_);
}
unsigned index = 0;
for (MethodSpecIterator it(t, spec); it.hasNext();) {
switch (*it.next()) {
case 'L':
case '[':
addObject(objectArrayBody(t, arguments, index++));
break;
case 'J':
case 'D':
addLong(cast<int64_t>(objectArrayBody(t, arguments, index++),
BytesPerWord));
break;
default:
addInt(cast<int32_t>(objectArrayBody(t, arguments, index++),
BytesPerWord));
break;
}
}
}
void addObject(object v) {
array[position] = reinterpret_cast<uintptr_t>(v);
objectMask[position] = true;
++ position;
}
void addInt(uintptr_t v) {
array[position] = v;
objectMask[position] = false;
++ position;
}
void addLong(uint64_t v) {
memcpy(array + position, &v, 8);
objectMask[position] = false;
objectMask[position] = false;
position += 2;
}
MyThread* t;
uintptr_t* array;
bool* objectMask;
unsigned position;
class MyProtector: public Thread::Protector {
public:
MyProtector(ArgumentList* list): Protector(list->t), list(list) { }
virtual void visit(Heap::Visitor* v) {
for (unsigned i = 0; i < list->position; ++i) {
if (list->objectMask[i]) {
v->visit(reinterpret_cast<object*>(list->array + i));
}
}
}
ArgumentList* list;
} protector;
};
object
invoke(Thread* thread, object method, ArgumentList* arguments)
{
MyThread* t = static_cast<MyThread*>(thread);
unsigned returnCode = methodReturnCode(t, method);
unsigned returnType = fieldType(t, returnCode);
Reference* reference = t->reference;
MyThread::CallTrace trace(t);
uint64_t result = vmInvoke
(t, &singletonValue(t, methodCompiled(t, method), 0), arguments->array,
arguments->position * BytesPerWord, returnType);
while (t->reference != reference) {
dispose(t, t->reference);
}
object r;
switch (returnCode) {
case ByteField:
case BooleanField:
case CharField:
case ShortField:
case FloatField:
case IntField:
r = makeInt(t, result);
break;
case LongField:
case DoubleField:
r = makeLong(t, result);
break;
case ObjectField:
r = reinterpret_cast<object>(result);
break;
case VoidField:
r = 0;
break;
default:
abort(t);
};
return r;
}
class MyProcessor: public Processor {
public:
MyProcessor(System* s):
s(s),
defaultCompiled(0),
nativeCompiled(0),
addressTable(0),
addressCount(0),
indirectCaller(0)
{ }
virtual Thread*
makeThread(Machine* m, object javaThread, Thread* parent)
{
MyThread* t = new (s->allocate(sizeof(MyThread)))
MyThread(m, javaThread, parent);
t->init();
return t;
}
object getDefaultCompiled(MyThread* t) {
if (defaultCompiled == 0) {
Compiler* c = makeCompiler(t->m->system, 0);
defaultCompiled = compileDefault(t, c);
c->dispose();
}
return defaultCompiled;
}
object getNativeCompiled(MyThread* t) {
if (nativeCompiled == 0) {
Compiler* c = makeCompiler(t->m->system, 0);
nativeCompiled = compileNative(t, c);
c->dispose();
}
return nativeCompiled;
}
virtual object
makeMethod(vm::Thread* t,
uint8_t vmFlags,
uint8_t returnCode,
uint8_t parameterCount,
uint8_t parameterFootprint,
uint16_t flags,
uint16_t offset,
object name,
object spec,
object class_,
object code)
{
object compiled
= ((flags & ACC_NATIVE)
? getNativeCompiled(static_cast<MyThread*>(t))
: getDefaultCompiled(static_cast<MyThread*>(t)));
return vm::makeMethod
(t, vmFlags, returnCode, parameterCount, parameterFootprint, flags,
offset, name, spec, class_, code, compiled);
}
virtual object
makeClass(vm::Thread* t,
uint16_t flags,
uint8_t vmFlags,
uint8_t arrayDimensions,
uint16_t fixedSize,
uint16_t arrayElementSize,
object objectMask,
object name,
object super,
object interfaceTable,
object virtualTable,
object fieldTable,
object methodTable,
object staticTable,
object loader,
unsigned vtableLength)
{
return vm::makeClass
(t, flags, vmFlags, arrayDimensions, fixedSize, arrayElementSize,
objectMask, name, super, interfaceTable, virtualTable, fieldTable,
methodTable, staticTable, loader, vtableLength, false);
}
virtual void
initVtable(Thread* t, object c)
{
for (unsigned i = 0; i < classLength(t, c); ++i) {
object compiled
= ((classFlags(t, c) & ACC_NATIVE)
? getNativeCompiled(static_cast<MyThread*>(t))
: getDefaultCompiled(static_cast<MyThread*>(t)));
classVtable(t, c, i) = &singletonBody(t, compiled, 0);
}
}
virtual void
initClass(Thread* t, object c)
{
PROTECT(t, c);
ACQUIRE(t, t->m->classLock);
if (classVmFlags(t, c) & NeedInitFlag
and (classVmFlags(t, c) & InitFlag) == 0)
{
classVmFlags(t, c) |= InitFlag;
invoke(t, classInitializer(t, c), 0);
if (t->exception) {
t->exception = makeExceptionInInitializerError(t, t->exception);
}
classVmFlags(t, c) &= ~(NeedInitFlag | InitFlag);
}
}
virtual void
visitObjects(Thread* vmt, Heap::Visitor* v)
{
MyThread* t = static_cast<MyThread*>(vmt);
if (t == t->m->rootThread) {
v->visit(&defaultCompiled);
v->visit(&nativeCompiled);
v->visit(&addressTable);
}
for (Reference* r = t->reference; r; r = r->next) {
v->visit(&(r->target));
}
visitStack(t, v);
}
virtual void
walkStack(Thread* vmt, StackVisitor* v)
{
MyThread* t = static_cast<MyThread*>(vmt);
MyStackWalker walker(t);
walker.walk(v);
}
virtual int
lineNumber(Thread* vmt, object method, int ip)
{
return findLineNumber(static_cast<MyThread*>(vmt), method, ip);
}
virtual object*
makeLocalReference(Thread* vmt, object o)
{
if (o) {
MyThread* t = static_cast<MyThread*>(vmt);
Reference* r = new (t->m->system->allocate(sizeof(Reference)))
Reference(o, &(t->reference));
return &(r->target);
} else {
return 0;
}
}
virtual void
disposeLocalReference(Thread* t, object* r)
{
if (r) {
vm::dispose(t, reinterpret_cast<Reference*>(r));
}
}
virtual object
invokeArray(Thread* t, object method, object this_, object arguments)
{
assert(t, t->state == Thread::ActiveState
or t->state == Thread::ExclusiveState);
assert(t, ((methodFlags(t, method) & ACC_STATIC) == 0) xor (this_ == 0));
const char* spec = reinterpret_cast<char*>
(&byteArrayBody(t, methodSpec(t, method), 0));
unsigned size = methodParameterFootprint(t, method);
uintptr_t array[size];
bool objectMask[size];
ArgumentList list(t, array, objectMask, this_, spec, arguments);
PROTECT(t, method);
compile(static_cast<MyThread*>(t), method);
if (LIKELY(t->exception == 0)) {
return ::invoke(t, method, &list);
}
return 0;
}
virtual object
invokeList(Thread* t, object method, object this_, bool indirectObjects,
va_list arguments)
{
assert(t, t->state == Thread::ActiveState
or t->state == Thread::ExclusiveState);
assert(t, ((methodFlags(t, method) & ACC_STATIC) == 0) xor (this_ == 0));
const char* spec = reinterpret_cast<char*>
(&byteArrayBody(t, methodSpec(t, method), 0));
unsigned size = methodParameterFootprint(t, method);
uintptr_t array[size];
bool objectMask[size];
ArgumentList list
(t, array, objectMask, this_, spec, indirectObjects, arguments);
PROTECT(t, method);
compile(static_cast<MyThread*>(t), method);
if (LIKELY(t->exception == 0)) {
return ::invoke(t, method, &list);
}
return 0;
}
virtual object
invokeList(Thread* t, const char* className, const char* methodName,
const char* methodSpec, object this_, va_list arguments)
{
assert(t, t->state == Thread::ActiveState
or t->state == Thread::ExclusiveState);
unsigned size = parameterFootprint(t, methodSpec, false);
uintptr_t array[size];
bool objectMask[size];
ArgumentList list
(t, array, objectMask, this_, methodSpec, false, arguments);
object method = resolveMethod(t, className, methodName, methodSpec);
if (LIKELY(t->exception == 0)) {
assert(t, ((methodFlags(t, method) & ACC_STATIC) == 0) xor (this_ == 0));
PROTECT(t, method);
compile(static_cast<MyThread*>(t), method);
if (LIKELY(t->exception == 0)) {
return ::invoke(t, method, &list);
}
}
return 0;
}
virtual void dispose(Thread* thread) {
MyThread* t = static_cast<MyThread*>(thread);
while (t->reference) {
vm::dispose(t, t->reference);
}
}
virtual void dispose() {
if (indirectCaller) {
s->free(indirectCaller);
}
s->free(this);
}
System* s;
object defaultCompiled;
object nativeCompiled;
object addressTable;
unsigned addressCount;
uint8_t* indirectCaller;
};
MyProcessor*
processor(MyThread* t)
{
MyProcessor* p = static_cast<MyProcessor*>(t->m->processor);
if (p->addressTable == 0) {
ACQUIRE(t, t->m->classLock);
if (p->addressTable == 0) {
p->addressTable = makeArray(t, 128, true);
Compiler* c = makeCompiler(t->m->system, 0);
c->mov(c->base(), c->memory(c->thread(), difference(&(t->base), t)));
c->mov(c->stack(), c->memory(c->thread(), difference(&(t->stack), t)));
c->jmp(c->indirectTarget());
p->indirectCaller = static_cast<uint8_t*>
(t->m->system->allocate(c->codeSize()));
c->writeTo(p->indirectCaller);
c->dispose();
}
}
return p;
}
void
compile(MyThread* t, object method)
{
MyProcessor* p = processor(t);
if (methodCompiled(t, method) == p->getDefaultCompiled(t)) {
PROTECT(t, method);
ACQUIRE(t, t->m->classLock);
if (methodCompiled(t, method) == p->getDefaultCompiled(t)) {
Compiler* c = makeCompiler(t->m->system, p->indirectCaller);
object compiled = compile(t, c, method);
set(t, method, MethodCompiled, compiled);
if (methodVirtual(t, method)) {
classVtable(t, methodClass(t, method), methodOffset(t, method))
= &singletonValue(t, compiled, 0);
}
c->dispose();
}
}
}
object
findTraceNode(MyThread* t, void* address)
{
if (DebugTraces) {
fprintf(stderr, "find trace node %p\n", address);
}
MyProcessor* p = processor(t);
ACQUIRE(t, t->m->classLock);
intptr_t key = reinterpret_cast<intptr_t>(address);
unsigned index = static_cast<uintptr_t>(key)
& (arrayLength(t, p->addressTable) - 1);
for (object n = arrayBody(t, p->addressTable, index);
n; n = traceNodeNext(t, n))
{
intptr_t k = traceNodeAddress(t, n);
if (k == key) {
return n;
}
}
return 0;
}
object
resizeTable(MyThread* t, object oldTable, unsigned newLength)
{
PROTECT(t, oldTable);
object newTable = makeArray(t, newLength, true);
for (unsigned i = 0; i < arrayLength(t, oldTable); ++i) {
object next;
for (object p = arrayBody(t, oldTable, i); p; p = next) {
next = traceNodeNext(t, p);
intptr_t k = traceNodeAddress(t, p);
unsigned index = k & (newLength - 1);
set(t, p, TraceNodeNext, arrayBody(t, newTable, index));
set(t, newTable, ArrayBody + (index * BytesPerWord), p);
}
}
return newTable;
}
void
insertTraceNode(MyThread* t, object node)
{
if (DebugTraces) {
fprintf(stderr, "insert trace node %p\n",
reinterpret_cast<void*>(traceNodeAddress(t, node)));
}
MyProcessor* p = processor(t);
PROTECT(t, node);
ACQUIRE(t, t->m->classLock);
++ p->addressCount;
if (p->addressCount >= arrayLength(t, p->addressTable) * 2) {
p->addressTable = resizeTable
(t, p->addressTable, arrayLength(t, p->addressTable) * 2);
}
intptr_t key = traceNodeAddress(t, node);
unsigned index = static_cast<uintptr_t>(key)
& (arrayLength(t, p->addressTable) - 1);
set(t, node, TraceNodeNext, arrayBody(t, p->addressTable, index));
set(t, p->addressTable, ArrayBody + (index * BytesPerWord), node);
}
} // namespace
namespace vm {
Processor*
makeProcessor(System* system)
{
return new (system->allocate(sizeof(MyProcessor))) MyProcessor(system);
}
} // namespace vm