corda/sdk/tlibcrypto/sgx_ecc256_ecdsa.cpp
Angie Chinchilla 9441de4c38 Initial release of Intel SGX for Linux.
This release is used in conjunction with the linux-sgx-driver Intial release:
https://github.com/01org/linux-sgx-driver
commit-id: 0e865ce5e6b297a787bcdc12d98bada8174be6d7

Intel-id: 33399

Signed-off-by: Angie Chinchilla <angie.v.chinchilla@intel.com>
2016-06-23 18:51:53 -04:00

300 lines
12 KiB
C++

/*
* Copyright (C) 2011-2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sgx_ecc256_common.h"
const uint32_t sgx_nistp256_r[] = {
0xFC632551, 0xF3B9CAC2, 0xA7179E84, 0xBCE6FAAD, 0xFFFFFFFF, 0xFFFFFFFF,
0x00000000, 0xFFFFFFFF };
/* Computes signature for data based on private key
* Parameters:
* Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h
* Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system
* sgx_ec256_private_t *p_private - Pointer to the private key - LITTLE ENDIAN
* sgx_uint8_t *p_data - Pointer to the data to be signed
* uint32_t data_size - Size of the data to be signed
* Output: sgx_ec256_signature_t *p_signature - Pointer to the signature - LITTLE ENDIAN */
sgx_status_t sgx_ecdsa_sign(const uint8_t *p_data,
uint32_t data_size,
sgx_ec256_private_t *p_private,
sgx_ec256_signature_t *p_signature,
sgx_ecc_state_handle_t ecc_handle)
{
if ((ecc_handle == NULL) || (p_private == NULL) || (p_signature == NULL) || (p_data == NULL) || (data_size < 1))
{
return SGX_ERROR_INVALID_PARAMETER;
}
IppStatus ipp_ret = ippStsNoErr;
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
IppsBigNumState* p_ecp_order = NULL;
IppsBigNumState* p_hash_bn = NULL;
IppsBigNumState* p_msg_bn = NULL;
IppsBigNumState* p_eph_priv_bn = NULL;
IppsECCPPointState* p_eph_pub = NULL;
IppsBigNumState* p_reg_priv_bn = NULL;
IppsBigNumState* p_signx_bn = NULL;
IppsBigNumState* p_signy_bn = NULL;
Ipp32u *p_sigx = NULL;
Ipp32u *p_sigy = NULL;
int ecp_size = 0;
const int order_size = sizeof(sgx_nistp256_r);
uint32_t hash[8] = { 0 };
do
{
ipp_ret = sgx_ipp_newBN(sgx_nistp256_r, order_size, &p_ecp_order);
ERROR_BREAK(ipp_ret);
// Prepare the message used to sign.
ipp_ret = ippsHashMessage(p_data, data_size, (Ipp8u*)hash, IPP_ALG_HASH_SHA256);
ERROR_BREAK(ipp_ret);
/* Byte swap in creation of Big Number from SHA256 hash output */
ipp_ret = sgx_ipp_newBN(NULL, sizeof(hash), &p_hash_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsSetOctString_BN((Ipp8u*)hash, sizeof(hash), p_hash_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, order_size, &p_msg_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsMod_BN(p_hash_bn, p_ecp_order, p_msg_bn);
ERROR_BREAK(ipp_ret);
// Get ephemeral key pair.
ipp_ret = sgx_ipp_newBN(NULL, order_size, &p_eph_priv_bn);
ERROR_BREAK(ipp_ret);
//init eccp point
ipp_ret = ippsECCPPointGetSize(256, &ecp_size);
ERROR_BREAK(ipp_ret);
p_eph_pub = (IppsECCPPointState*)(malloc(ecp_size));
if (!p_eph_pub)
{
ipp_ret = ippStsNoMemErr;
break;
}
ipp_ret = ippsECCPPointInit(256, p_eph_pub);
ERROR_BREAK(ipp_ret);
// Generate ephemeral key pair for signing operation
// Notice that IPP ensures the private key generated is non-zero
ipp_ret = ippsECCPGenKeyPair(p_eph_priv_bn, p_eph_pub, p_ecc_state,
(IppBitSupplier)sgx_ipp_DRNGen, NULL);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPSetKeyPair(p_eph_priv_bn, p_eph_pub, ippFalse, p_ecc_state);
ERROR_BREAK(ipp_ret);
// Set the regular private key.
ipp_ret = sgx_ipp_newBN((uint32_t *)p_private->r, sizeof(p_private->r),
&p_reg_priv_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, order_size, &p_signx_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, order_size, &p_signy_bn);
ERROR_BREAK(ipp_ret);
// Sign the message.
ipp_ret = ippsECCPSignDSA(p_msg_bn, p_reg_priv_bn, p_signx_bn, p_signy_bn,
p_ecc_state);
ERROR_BREAK(ipp_ret);
IppsBigNumSGN sign;
int length;
ipp_ret = ippsRef_BN(&sign, &length,(Ipp32u**) &p_sigx, p_signx_bn);
ERROR_BREAK(ipp_ret);
memset(p_signature->x, 0, sizeof(p_signature->x));
ipp_ret = check_copy_size(sizeof(p_signature->x), ROUND_TO(length, 8) / 8);
ERROR_BREAK(ipp_ret);
memcpy(p_signature->x, p_sigx, ROUND_TO(length, 8) / 8);
memset_s(p_sigx, sizeof(p_signature->x), 0, ROUND_TO(length, 8) / 8);
ipp_ret = ippsRef_BN(&sign, &length,(Ipp32u**) &p_sigy, p_signy_bn);
ERROR_BREAK(ipp_ret);
memset(p_signature->y, 0, sizeof(p_signature->y));
ipp_ret = check_copy_size(sizeof(p_signature->y), ROUND_TO(length, 8) / 8);
ERROR_BREAK(ipp_ret);
memcpy(p_signature->y, p_sigy, ROUND_TO(length, 8) / 8);
memset_s(p_sigy, sizeof(p_signature->y), 0, ROUND_TO(length, 8) / 8);
} while (0);
// Clear buffer before free.
if (p_eph_pub)
memset_s(p_eph_pub, ecp_size, 0, ecp_size);
SAFE_FREE(p_eph_pub);
sgx_ipp_secure_free_BN(p_ecp_order, order_size);
sgx_ipp_secure_free_BN(p_hash_bn, sizeof(hash));
sgx_ipp_secure_free_BN(p_msg_bn, order_size);
sgx_ipp_secure_free_BN(p_eph_priv_bn, order_size);
sgx_ipp_secure_free_BN(p_reg_priv_bn, sizeof(p_private->r));
sgx_ipp_secure_free_BN(p_signx_bn, order_size);
sgx_ipp_secure_free_BN(p_signy_bn, order_size);
switch (ipp_ret)
{
case ippStsNoErr: return SGX_SUCCESS;
case ippStsNoMemErr:
case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY;
case ippStsNullPtrErr:
case ippStsLengthErr:
case ippStsOutOfRangeErr:
case ippStsSizeErr:
case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER;
default: return SGX_ERROR_UNEXPECTED;
}
}
/* Verifies the signature for the given data based on the public key
*
* Parameters:
* Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h
* Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system
* sgx_ec256_public_t *p_public - Pointer to the public key - LITTLE ENDIAN
* uint8_t *p_data - Pointer to the data to be signed
* uint32_t data_size - Size of the data to be signed
* sgx_ec256_signature_t *p_signature - Pointer to the signature - LITTLE ENDIAN
* Output: uint8_t *p_result - Pointer to the result of verification check */
sgx_status_t sgx_ecdsa_verify(const uint8_t *p_data,
uint32_t data_size,
const sgx_ec256_public_t *p_public,
sgx_ec256_signature_t *p_signature,
uint8_t *p_result,
sgx_ecc_state_handle_t ecc_handle)
{
if ((ecc_handle == NULL) || (p_public == NULL) || (p_signature == NULL) ||
(p_data == NULL) || (data_size < 1) || (p_result == NULL))
{
return SGX_ERROR_INVALID_PARAMETER;
}
IppStatus ipp_ret = ippStsNoErr;
IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle;
IppECResult result = ippECInvalidSignature;
*p_result = SGX_EC_INVALID_SIGNATURE;
IppsBigNumState* p_ecp_order = NULL;
IppsBigNumState* p_hash_bn = NULL;
IppsBigNumState* p_msg_bn = NULL;
IppsECCPPointState* p_reg_pub = NULL;
IppsBigNumState* p_reg_pubx_bn = NULL;
IppsBigNumState* p_reg_puby_bn = NULL;
IppsBigNumState* p_signx_bn = NULL;
IppsBigNumState* p_signy_bn = NULL;
const int order_size = sizeof(sgx_nistp256_r);
uint32_t hash[8] = { 0 };
int ecp_size = 0;
do
{
ipp_ret = sgx_ipp_newBN(sgx_nistp256_r, order_size, &p_ecp_order);
ERROR_BREAK(ipp_ret);
// Prepare the message used to sign.
ipp_ret = ippsHashMessage(p_data, data_size, (Ipp8u*)hash, IPP_ALG_HASH_SHA256);
ERROR_BREAK(ipp_ret);
/* Byte swap in creation of Big Number from SHA256 hash output */
ipp_ret = sgx_ipp_newBN(NULL, sizeof(hash), &p_hash_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsSetOctString_BN((Ipp8u*)hash, sizeof(hash), p_hash_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(NULL, order_size, &p_msg_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsMod_BN(p_hash_bn, p_ecp_order, p_msg_bn);
ERROR_BREAK(ipp_ret);
//Init eccp point
ipp_ret = ippsECCPPointGetSize(256, &ecp_size);
ERROR_BREAK(ipp_ret);
p_reg_pub = (IppsECCPPointState*)(malloc(ecp_size));
if (!p_reg_pub)
{
ipp_ret = ippStsNoMemErr;
break;
}
ipp_ret = ippsECCPPointInit(256, p_reg_pub);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN((const uint32_t *)p_public->gx, sizeof(p_public->gx),
&p_reg_pubx_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN((const uint32_t *)p_public->gy, sizeof(p_public->gy),
&p_reg_puby_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPSetPoint(p_reg_pubx_bn, p_reg_puby_bn, p_reg_pub,
p_ecc_state);
ERROR_BREAK(ipp_ret);
ipp_ret = ippsECCPSetKeyPair(NULL, p_reg_pub, ippTrue, p_ecc_state);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(p_signature->x, order_size, &p_signx_bn);
ERROR_BREAK(ipp_ret);
ipp_ret = sgx_ipp_newBN(p_signature->y, order_size, &p_signy_bn);
ERROR_BREAK(ipp_ret);
// Verify the message.
ipp_ret = ippsECCPVerifyDSA(p_msg_bn, p_signx_bn, p_signy_bn, &result,
p_ecc_state);
ERROR_BREAK(ipp_ret);
} while (0);
// Clear buffer before free.
if (p_reg_pub)
memset_s(p_reg_pub, ecp_size, 0, ecp_size);
SAFE_FREE(p_reg_pub);
sgx_ipp_secure_free_BN(p_ecp_order, order_size);
sgx_ipp_secure_free_BN(p_hash_bn, sizeof(hash));
sgx_ipp_secure_free_BN(p_msg_bn, order_size);
sgx_ipp_secure_free_BN(p_reg_pubx_bn, sizeof(p_public->gx));
sgx_ipp_secure_free_BN(p_reg_puby_bn, sizeof(p_public->gy));
sgx_ipp_secure_free_BN(p_signx_bn, order_size);
sgx_ipp_secure_free_BN(p_signy_bn, order_size);
switch (result) {
case ippECValid: *p_result = SGX_EC_VALID; break; /* validation pass successfully */
case ippECInvalidSignature: *p_result = SGX_EC_INVALID_SIGNATURE; break; /* invalid signature */
default: *p_result = SGX_EC_INVALID_SIGNATURE; break;
}
switch (ipp_ret)
{
case ippStsNoErr: return SGX_SUCCESS;
case ippStsNoMemErr:
case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY;
case ippStsNullPtrErr:
case ippStsLengthErr:
case ippStsOutOfRangeErr:
case ippStsSizeErr:
case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER;
default: return SGX_ERROR_UNEXPECTED;
}
}